SANDIA REPORT

SAND2001-0913
Unlimited Release
Printed April 2001

ACME

Algorithms for Contact in a Multiphysics
Environment

APl Version 0.3a

Kevin H. Brown, Randall M. Summers, Michael W. Glass, Arne S. Gullerud,
Martin W. Heinstein, and Reese E. Jones

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department
of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represent
that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof,
or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any
agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401

Facsimile: (865)576-5728

E-Mail: feports@adonis.osti.gov |
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847

Facsimile: (703)605-6900

E-Mail: prders@ntis.fedworld.gov|

Online order: http://www.ntis.gov/ordering.htm

mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov

SAND2001-0913
Unlimited Release
Printed April 2001

ACME
Algorithmsfor Contact in a M ultiphysics Environment
APl Verson 0.3a

Kevin H. Brown and Randall M. Summers
Computational Physics R&D Department

Micheal W. Glass
Thermal/Fluid Computational Engineering Sciences Department

Arne S. Gullerud and Martin W. Heinstein
Computational Solid Mechanics & Structural Mechanics Department

Reese E. Jones
Science-Based Materials Modeling Department

Sandia National Laboratories
P O. Box 5800
Albuquerque, NM 87185-0819

Abstract

An effort is underway at Sandia National Laboratories to develop a library of algorithms
to search for potentia interactions between surfaces represented by anaytic and dis-
cretized topological entities. This effort is aso developing algorithms to determine forces
due to these interactions for transient dynamics applications. This document describes the
Application Programming Interface (API) for the ACME (Algorithms for Contact in a
Multiphysics Environment) library.

Table of Contents

Table of ContENtS 5
LISt Of FIQUIES. . . oo e e e e e 11
Listof Tables 13
L oIntroduction. e 15
L1 TOPOIOQY - - v oo ettt e e e e e e e 15
111 Node BIOCKS e 16

112 Face BIOCKS. 16

1.1.3 Analytic SUMaces.o 17

114 Search Dala.ooii i 17

1.2 Search Algorithms 18
121 Static Search 1 Configuration., 19

1.2.2 Static Search 2 Configuration................ciii... 20

1.2.3 Dynamic_Search 2 Configurationcooiiuio... 20

13 INEraCtioNS . ..ot v ettt e 20
1.3.1 NodeFace Interactions. . ..o 20

1.3.2 NodeSurface Interactionsccuuiinniinanenn 22

14 SearCh OPLiONS . . .ottt e 23
141 MultipleInteractionsataNodecoiiin.. 23

142 Norma Smoothing. i 24

1.5 Explicit Transient Dynamic Enforcement.ttt 25
1.6 GapRemoval Enforcement. i 26
L7 BITOrS. . o 26
1.8 PlOtiNg . . oottt e 27

2. C++ Application Programming Interface (AP1) 31
21 VasonandDate. e 31
200 VOIS 0N . ottt 31

212 VeESiONDEaeot e 31

213 Contact MPI_Compatibility 31

2.2 EBITOrS. . 32
221 Number of Errors.o 32

222 EmMOr_MESSagEot 32

2.3 CreatingaContactSearch Objectcc i 32
231 ContactSearch. 32

24 SearCh Data . ..o 34
241 Check Search Data Size............c.cciiiiiiiiiiiinnn.. 34

242 Set_ Search Data.ooi i 34

25 Analytic SUMaCeS. 34
251 Add Analytic Surface. 34

252 Set Anaytic Surface Configuration. 36

26 Node Block Datacviiii e e e 36
2.6.1 Set Node Block Configuration 36

2.6.2 Set_Node Block Attributes. 37

2.7 Search AlQorithms 37

27.1 Set Search OptioNn.t e 37
272 Static_Search_1 Configuration, 38
2.7.3 Static_ Search _2 Configuration., 38
2.74 Dynamic_Search_2 Configuration......................cc..... 38

2.8 Extracting NodeFace Interactionsouiinineii e 38
2.8.1 Size NodeFace InteraCtions, 38
2.8.2 Get NodeFace Interactions. 39

2.9 Extracting NodeSurface Interactions., 39
29.1 Size NodeSurface Interactions. ..., 39
2.9.2 Get NodeSurface Interactions., 40

210 EXodusll PlOttiNg . ..o 40
2.10.1 EXOAUS OULPUL. . . . oottt e e e e e e e e e e 40
211 Restart FUNCLIONS oo e 41
2111 ReStat SIZe ..ot 41
2112 Extract Restart Data. ...t 41
2.11.3 ContactSearch (restart). 41
2.12 Registering an Enforcement Object withtheSearch 42
2121 Register Enforcement 42
2.13 Creating a ContactTDEnforcement Object. 42
2.13.1 ContactTDENforcementouii e 42
214 Extracting Contact FOrCeS.ot 43
2.14.1 Compute Contact FOrceovii i e 43
2.15 Creating a ContactGapRemoval Object 43
2.16 Extracting the Gap Removal Displacements. 43
. C Application Programming Interface (API) 45
31 Versonand Date.t 45
Bl VEISION .« ottt 45
312 vErSONdate 45
3.1.3 contact_mpi_compatibility............ i 46

3.2 BITOrS. . o 46
321 number_of search ermors.t 46
322 get search error messageo v i i 46

3.3 Creating aContactSearch “Object”t 47
331 buldsearch. a7

34 SearCh Dataot 438
341 check search data size........... 48
342 set search data.o i 48

35 Analytic_ SUMaceS. 49
351 add analytic surface 49
3.5.2 set analytic surface configuration 49

3.6 Node Block Datacoviiii e e 50
3.6.1 set node block configuration................. 50
3.6.2 set_node block attributes i 51

3.7 Search AlQorithms 51

371 set search option.......... .. i 51

3.7.2 satic_search 1 configuration iiiin... 52
3.7.3 static_search 2 configuration, 52
3.74 dynamic _search_2 configuration................c.ccoiuuiinian... 52

3.8 Extracting NodeFace Interactions 52
3.8.1 sSize nodeface interactions. 52
3.8.2 get nodeface interactionsc.cciiiiiii i 52

3.9 Extracting NodeSurface Interactions.ccoiiiiiiennnn.. 53
3.9.1 size nodesurface interactionst 53
3.9.2 get nodesurface interactions.c..iiiiinnnnen.n. 54
3A0EXOdusll PlOttingo e 54
3.10.1 eX0dUS OULPUL.o ettt e e 54
BALReSart FUNCLIONS . ..ot e 55
ALl restart SIZe ... 55
311.2 extract_restart data. 55
3113 build search restart 55
3.12 Registering an Enforcement Object withtheSearch 56
3.12.1 reg_td_enforcement w_search.............. 56
3122 reg_gap removal W _SearCh. 56
3.13 Creating a ContactTDENnforcement “Object” 56
3.13.1 build td enforcement. 56
3.14 Extracting Contact FOrCeS.ot e 56
3.14.1 compute td contact forces............... . i 56
3.15 Creating a ContactGapRemoval “Object” 57
3151 build gap removal. 57
3.16 Extracting the Gap Removal Displacements. 57
3.16.1 compute gap removal 57

B A7 Gl U . o 57
3171 cleanup Search 58
3.17.2 cleanup_td_enforcement. 58
3173 cleanup_gap removal. 58

. Fortran Application Programming Interface (API). 59
41 Versionand Dale.t e 59
A1 VEISION ottt e 59
412 VErSiONdateo 59
4.1.3 contact_mpi_compatibility......... 59

A2 EITONS. . ottt e 60
421 number_of _search errors. 60
422 Qget_SearCh_error MESSA0E . . v v vt v ettt et 60

4.3 Creating aContactSearch“Object” 60
431 build search 60

44 SearCh Data e 62
441 check search data size.............. ... 62
442 set search data. 62

45 ANalytiC SUMaCES.ot 62

451 add analytic surface ... 63

452 set_analytic surface configuration 63

4.6 Node Block Dataot 64
4.6.1 set_ node block configuration.............. 64
4.6.2 set_node block attributes 65

4.7 Search AlQOrithms 65
471 set search option.t 65
4.7.2 satic search 1 configuration 65
4.7.3 static_search 2 configuration i, 66
4.7.4 dynamic_search 2 configuration.ccuiuiunen.... 66

4.8 Extracting NodeFace Interactions 66
4.8.1 sSize nodeface interaCtions. 66
4.8.2 get_nodeface interactions ..., 66

4.9 Extracting NodeSurface Interactions., 67
49.1 size nodesurface interactions, 67
4.9.2 get_nodesurface interactions., 67

410 EXodusll PlOttiNgo e 68
4.10.1 eXOAUS OULPUL. . . . oottt et e e e et 68
411 ReStart FUNCHIONS . .. oot e ettt e 68
4111 restart SIZ8 . ..ot 69
4112 extract_restart data. 69
4.11.3 build search restart 69
4.12 Registering an Enforcement Object withtheSearch 69
4.12.1 reg_td_enforcement w_search. 70
4122 reg gap removal W_search. ... 70
4.13 Creating a ContactTDENforcement “Object” 70
4.13.1 build td enforcement. 70
4.14 Extracting ContaCt FOrCES.ottt e 70
4.14.1 compute td contact forces............. 70
4.15 Creating a ContactGapRemoval “Object” 71
4.15.1 build_gap removal 71
4.16 Extracting the Gap Removal Displacements. 71
4.16.1 compute gap_removal 71
407 Clean Up . . oo 71
4171 cleanup _search. 71
4.17.2 cleanup_td _enforcement. 71
4.17.3 cleanup_gap_removal.t 72
CEXample. . 73
51 Problem Description.ot 73
5.2 Congtructing aContactSearch Object. 75
5.3 AddinganAnalytic Surface. i 76
54 SearchData.ov i e 76
55 SettingtheSearch Options e 77
5.6 Specifying Configurationst 78

57 PeformingtheSearch........ 79

5.8 Extracting Interactions
5.9 Exodusll Output

Appendix A: Glossary of ACME Terms

10

List of Figures

Figure 1. Idealized 2D face with Search_Normal_Tolerance..........ccccccvvvevveeecnenen. 19
Figure 2. Idealized 2D face with Search_Tangential_Tolerance.............cccceeceenuennen. 19
Figure 3. 3D NodeFace INtEraCtionS...........ceoererierierieresese e 21
Figure 4. 3D NodeSurface Interaction Data............cccceeveeiieieeneeie e 22
Figure 5. Definition of Angle Between Faces..........cooovvreeniiie e 23
Figure 6. Interactions for Single vs. Multiple Interaction Definition........................ 23
Figure 7. Normal Smoothing ACross an Edge..........cooveveveereccie v 24
Figure 8. Region of Normal Smoothing for aQuadFacel4...........ccccocovveeneeiiennenne 24
Figure 9. [Hlustration of Normal Smoothing ResolUtionccecveienencnc e 25
Figure 10. Analytic Cylindrical SUMaCeS..........cccevieieiiere e 35

Figure 11. Exampleimpact problem (two rectangular bodies and an
Analytic_Surface)73

Figure 12. Face Block Numbering for Example Problem..........ccccccooeveiieievicieenn, 73
Figure 13. Surface Topology for Example Problem...........cccccooeiiniineninin e 74
Figure 14. Exodusll Output for Example Problem ... 82

11

12

List of Tables

Table 1. NodeFace Interaction Datafor 3Dccccceveeieeiiieecece e 21
Table 2. NodeSurface Interaction Datafor 3Dcccceverieiieiiriere e 22
Table 3. Nodal Variablesfor EXOdusll OQULPULc.cceeveiiriereneneneneeieee e 28
Table 4. Element Variables for EXodusll OQULPUL...........ccceevviierieie i 29
Table 5. C++ Data Description for Analytic_SUrfaces.........c.ccoeeeieieevenieneesese e 35
Table 6. C DataDescription for AnalytiC_SUIaCeSccooevinirenerierieeese e 49
Table 7. Fortran Data Description for Analytic_Surfaces..........ccccoveeveeveieseccece, 63
Table 8. Face Blocksfor Example Problem ... 74
Table 9. Current and Predicted Positions for Example Problem ... 78
Table 10. NodeFace Interactionsfor Example Problem..........cccccoovveveciecececce e 80
Table 11. NodeSurface Interactions for Example Problem ... 81

13

14

Introduction

1. Introduction

Contact algorithms play an important role in many research and production codes that
simulate various interfacial aspects of continuum solid and fluid mechanics and energy
transport. Because of the difficult nature of contact in general and in order to concentrate
and leverage devel opment efforts, an effort is underway at Sandia National Laboratoriesto
develop alibrary of algorithmsto search for potential interactions between surfaces repre-
sented by finite element meshes and other topological entities. The requirements for such
a library, along with other pertinent information, are documented at the following World
Wide Web site:

http://ww. jal.sandi a. gov/ SEACAS/ cont act /i ndex. ht m

This document describes the Application Programming Interface (API) for the ACME
search and transient dynamics enforcement library. (In an attempt to avoid confusion, cap-
italized terms are used in this document to refer to specific terminology for which detailed
definitions are provided. A glossary of thesetermsisgivenin Appendix A.) Thisintroduc-
tory section gives an overview of the concepts and design of the ACME interface and out-
lines the building blocks that make up the data ACME needs from the host code and the
datait returns to the host code. Sections 2, 3, and 4 give the details of the C++, C, and For-
tran interfaces, respectively. Section 5 provides an example of how to use the C++ API.
The basic philosophy of the ACME interface is to provide a separate function to support
each activity. Efforts have been made to have the C++, C, and Fortran interfaces appear as
similar as possible. It is important to note that all array indexes will use the Fortran con-
vention (i.e., indexes start with 1) and all floating-point datais double precision.

This beta release of the ACME library contains only a subset of the algorithms and func-
tionality required to meet al the needs of the application codes. Currently, ACME sup-
ports three-dimensiona (3D) topologies in serial and in parallel processing modes. No
multistate support is provided in this release (i.e., ACME has no ability to revert to previ-
ous states). ACME only supports conventional nodes (shell nodes and smooth particle hy-
drodynamics nodes are not yet supported) and a limited set of face types (alinear 4-node
quadrilateral, a quadratic 8-node quadrilateral, alinear 3-node triangle, and a quadratic 6-
node triangle) in this release. Additional algorithms and functionality will be added in
subsequent releases.

1.1 Topology

The topology for ACME is determined by the host code. The first step in using the library
is for the host code to provide to ACME a topological description of the surfaces to be
checked for interactions. Currently, the topology consists of collections of nodes, faces,
and analytic surfaces. Nodes and faces are supplied to ACME in groups called blocks. A
Node_Block may contain only one type of node. A Face _Block may contain only onetype
of face and al faces will have the same Entity Key (Entity_Keys are used to extract user-
specified parameters from the Search_Data array for pairs of interacting topological enti-
ties, as explained in Section 1.1.4). Providing the full functionality required of ACME will
necessitate adding Edge Blocks and Element_Blocks. When added, these items will be

15

I ntroduction

analogous to the Face Blocks (see the description in Section 1.1.2). Also, the full func-
tionality required of ACME will necessitate adding multiple states; for this initial release
of ACME, only asingle state (with one or two configurations) will be supported.

1.1.1 Node Blocks

A Node Block is a collection of nodes of the same type. Currently, the only type of node
supported in ACME is a conventional node that has position but no additional attributes.
Eventually three types of nodes will be supported:

NODE: A traditional node with position.

NODE W TH SLOPE: A shell node that has a first derivative as an at-
tribute.

NODE_ W TH_RADI US: A node that has a radius as an attribute. This ra-
dius is associated with the size of a spherical domain, as wth
snoot h particle hydrodynam cs (SPH) particles.

Sincein thisrelease only one type of node is supported, currently all nodes must be placed
inasingle Node Block.

Each Node Block is assigned an integer identifier (ID). This ID corresponds to the order
the blocks were specified, using the Fortran numbering convention (i.e., the first block has
an ID of 1, the second block hasan ID of 2, etc.). ThisID isused in specifying configura-
tions for Node Blocks and for returning NodeFace Interactions and
NodeSurface Interactions, discussed later in Section 1.3.

1.1.2 Face Blocks

A Face Block is a collection of faces of the same type that have the same Entity Key
(Entity_Keys are used to extract user-specified parameters from the Search_Data array, as
explained in Section 1.1.4). Currently, a linear 4-node quadrilateral face called
QUADFACEL4, a quadratic 8-node quadrilateral face called QUADFACEQS, a linear 3-
node triangular face called TRIFACEL3, and a quadratic 6-node triangular face called
TRIFACEQ6 are supported. Other face types will be added as needed. These are provided
in an enumeration in the ContactSearch header file:

enum Cont act Face_Type {
QUADFACEL4 = 1,
QUADFACES,
TRI FACEL3,
TRI FACEQ® }

Each Face Block is assigned an ID. This ID corresponds to the order the blocks were
specified, in the same manner 1Ds were assigned to Node Blocks. ThisID isused in re-
turning NodeFace_|nteractions.

16

Introduction

1.1.3 Analytic_Surfaces

In many instances, it is advantageous to search for interactions against rigid analytic sur-
faces (referred to as Analytic_Surfaces throughout this document) rather than mesh such a
surface. Examples include atire rolling on aflat road or dropping a shipping container on
a post. Currently, ACME is designed to handle only geometric analytic surfaces (e.g.,
planes, cylinders, etc.), and for now, only planar, spherical and cylindrica
Analytic_Surfaces are supported. Other geometric Analytic_Surfaces will be added in the
future as needed. Eventually, Analytic_Surfaces defined by Non-Uniform Rational B-
Splines (NURBS) will be supported. The ACME API will need to be extended to support
Analytic_Surfaces defined by NURBS.

Analytic_Surfaces, if any, are provided by the host code to ACME after the Node Blocks
and Face Blocks have been specified. Analytic_Surfaces are given an ID that corresponds
to the total number of Face Blocks plus the order the Analytic_Surface was added (e.g., if
three Face Blocks exist in the topology, the ID of thefirst Analytic_Surface is 4, the ID of
the second Anaytic Surface is 5, etc). This ID is wused in returning
NodeSurface_Interactions.

1.1.4 Search_Data

The Search_Data array contains data that describe how the various topological entities are
allowed to interact. The host code may specify, for example, that only nodes on surface A
interact with faces on surface B, or that only nodes on surface B interact with faces on sur-
face A, or both. The Search_Data array is the only place where such user-specified data
are kept.

Currently the Search_Data array holds only three parameters for each Entity Key pair.
The first parameter is a status flag indicating what type of interactions should be defined
for this pair. Three values are currently permitted, provided in an enumeration in the Con-
tactSearch header file:

enum Sear ch_I nteraction_Type{
NO_I NTERACTI ON = O,
SLI DI NG_| NTERACTI ON,
TI ED_| NTERACTI ON };

NO_INTERACTION (avalue of 0) requests that no interactions be defined for this pair of
entities. SLIDING_INTERACTION (avalue of 1) requests that ACME search for new in-
teractions between entities each time a search is executed. TIED _INTERACTION (aval-
ue of 2) requests that an interaction between entities persist and can be used for mesh
tying. (The explicit transient dynamic enforcement algorithms provided with this release
of ACME do not yet support enforcement of tied interactions; this capability is scheduled
to be added for release 0.4.)

The second parameter in the Search_Data array isthe Search_Normal_Tolerance, whichis

used to determine whether the entity pair should interact, based on the separation between
the entities (see Figure 1.). Note that the Search_Normal_Tolerance is an absolute dis-

17

I ntroduction

tance, so it is dependent on the units of the problem. The third parameter is the
Search_Tangential_Tolerance, also used to determine whether the entity pair should inter-
act, but taking into account distances tangential to aface, rather than normal to it.

Every face and node is assigned an Entity Key to allow retrieval of data from the
Search_Data array. For faces, the Entity_Key corresponds to the Face Block ID. Current-
ly, anode inherits its Entity_Key from the first face that containsit. Thisis alimitation of
the current implementation, since a node can be connected to two or more facesthat arein
different Face Blocks.

The Search_Data array is athree-dimensional Fortran array with the following size
di rensi on search_data(3, numentity_keys, numentity_keys)

The first index represents one of the three parameters described previously for each entity
pair, currently either a node-face or a node-Analytic_Surface pair. The second index indi-
cates the Entity_Key for the node in an interaction, and the third index indicates the
Entity Key for the face or Analytic_Surface in an interaction.

1.2 Search Algorithms

ACME provides three different algorithms for determining interactions. The data types re-
turned in the interactions are the same for each type of search. The host code may use dif-
ferent types of search agorithms during an analysis (e.g., a static 1-configuration search to
determine overlaps in the mesh before starting the analysis and then a dynamic search
once time stepping begins in atransient dynamics code).

As an aid to understanding the differences between the search algorithms, consider the
idealized 2D face of Figure 1.. In thisidealized example, the subtleties of what happens at
the edge of aface are ignored. Any node that is outside the face, where “outside” is de-
fined by the outward unit normal n, is not penetrating and has a positive Gap. Any node
that ison the face (i.e., azero Gap) or inside the face (i.e., anegative Gap) is considered to
be penetrating. The host code controls the Search_Normal_Tolerance as part of the
Search_Data array (see Section 1.1.4). The Motion_Tolerance accounts for movement of
the node if two configurations are used and is computed by ACME.

18

Introduction

=]

Face

* Not Penetrating
N o -
Search_Normal_Tol eranc (positive Gap) within
Search_Normal_Tolerance Search_Normal_Tolerance
Penetrating

Motion_Tolerance m (zero or negative Gap) within

Search_Normal_Tolerance

I:I Penetrating
within Motion_Tolerance

Figure 1. ldealized 2D face with Search_Normal_Tolerance

A separate tolerance, Search_Tangential_Tolerance, is used to specify the behavior of the
search algorithms along the edge of aface. As shown in Figure 2., a node-face interaction
will be defined for any node that is outside the face tangentially but within the
Search_Tangential_Tolerance. The host code controls the Search_Tangential_Tolerance as
part of the Search_Data array (see Section 1.1.4).

m—— [oce

Face Extension for
_ Search_Tangential_Tolerance
Search_Tangential_Tolerance Node interacting with Face

O
o !+—
@ Nodeinteracting with Face
within Search_Tangential_Tolerance

O Nodenot interacting with Face

Figure 2. ldealized 2D face with Search_Tangential _Tolerance
121 Static Search _1 Configuration

The Static_Search_1 Configuration algorithm uses only one configuration for the topolo-
gy. The interactions are determined using only a closest point projection algorithm. Inter-
actions are defined only for nodes that are within the Search_ Normal _Tolerance (either
negative or positive Gap) and the Search Tangential Tolerance since the
Motion_Toleranceisimplied to be zero.

19

I ntroduction

1.2.2 Static_Search_2 Configuration

The Static_Search 2 Configuration algorithm requires two configurations (Current and
Predicted) for the topology. This search agorithm uses closest point projection on the pre-
dicted configuration but it has the added information of the movement of the topology.
The motion tolerance implied by the two configurations is used along with the
Search_Data to determine what interactions are physically realistic. Specifically, any node
that has a positive Gap within the Search_Normal_Tolerance or any node that has a nega-
tive Gap within the Search_Normal_Tolerance plus the motion tolerance will result in an
interaction being defined, provided that the node’s projection falls within the face bound-
ary as extended laterally by the Search_Tangentia _Tolerance.

1.2.3 Dynamic_Search_2 Configuration

The Dynamic_Search_2_Configuration algorithm also requires two configurations (Cur-
rent and Predicted) for the topology. A dynamic intersection algorithm based on linear in-
terpolation of the motion is used to initiate interaction if the current and predicted Gaps
are on opposing sides of the face (e.g., the current configuration has a positive Gap and the
predicted configuration has a negative Gap). A closest point projection algorithm is used
for subsequent interaction definition and to initiate interaction if the current and predicted
Gaps are on the same side of the face. In these cases, interactions are defined by the same
criteriaasin the Static_Search_2_Configuration algorithm (see Figure 1.).

1.3 Interactions

The output of ACME following a search is a collection of interactions based on the topol -
ogy, configuration(s), Search_Data and search algorithm. Currently, two types of interac-
tions are supported: NodeFace Interactions and NodeSurface Interactions. ACME does
not determine the best interaction between these two types (i.e.,, ACME does not compete
a NodeFace Interaction against a NodeSurface Interaction when the same node is in-
volved, both are returned to the host code). Other interaction types (eg.,
FaceFace Interaction and EdgeFace Interaction) will be added in the future.

1.3.1 NodeFace Interactions

A NodeFace Interaction is returned as a set of data to the host code: a node (indicated by
the Node Block ID and the index in that Node Block), a face (indicated by the
Face Block ID and the index in that Face Block) and data describing the interaction.
Consider the examples shown in Figure 3.. The first diagram illustrates an interaction de-
fined using the dynamic intersection algorithm. Here, a node, lightly shaded in its current
configuration and black in its predicted configuration, intersectsa TRIFACEL3 at X in an
intermediate configuration denoted with white nodes. The motion of the node is represent-
ed by the vector vg. Also shown are the data that are returned for this interaction. Specifi-
cally, the pushback direction is given by the vector from the penetrating node’s predicted
position to the position of the contact point convected into the predicted configuration. In
the second diagram, the contact point X, determined by closest point projection for asin-
gle configuration, is shown in local coordinate space for a QUADFACELA4. Table 1. gives

20

Introduction

the Fortran layout of how the data are returned. It should be noted that only two local coor-
dinates are returned. For triangular faces, the third local coordinate is simply unity minus
the sum of the other two local coordinates.

n
4 A 3
[
a
X - &
(E1.n1)
1 2
o °
(_11_1)
Local Coordinates: &, = % Local Coordinates; &1 = &
(of contact point X) AT (of contact point X)
& = Ki &=y
A
53 = ﬁ
Ga-p: g (not returned) Gap: g (not shown)
Unit Pushback Vector: p Unit Pushback Vector: p (not shown)
Unit Surface Normal: 7 Unit Surface Normal: & (not shown)
Algorithm: Dynamic | ntersection Algorithm: Closest Point Projection

(1-Configuration)

Figure 3. 3D NodeFace Interactions

Table 1. NodeFace Interaction Datafor 3D

Location Quantit
(Fortran Indexing) y
1 Local Coordinate 1 (&4 for Q4 or Q8, &, for T3 or T6)
2 Local Coordinate 2 (n, for Q4 or Q8, &, for T3 or T6)
3 Gap
4-6 Unit Pushback Vector (x, y & z components)
7-9 Unit Surface Normal (X, y & z components)
10 Algorithm Used to Define Interaction
{1=Closest Point Projection (1 Configuration),
2=Closest Point Projection (2 Configuration),
3=Dynamic Intersection (2 Configuration)}

21

I ntroduction

1.3.2 NodeSurface Interactions

A NodeSurface Interaction is returned as a set of data: a node (indicated by the
Node Block ID and the index in that Node Block), an Analytic_Surface (indicated by its
ID) and the data describing the interaction. Figure 4. shows the interaction data that are re-
turned to the host code for each interaction. Table 2. gives the layout for the data for a
NodeSurface Interaction.

For this release of ACME, NodeSurface _Interactions are determined using a closest point
projection agorithm. Therefore, only one configuration is required for the
Analytic_Surfaces. The configuration used for the nodes is based on the current configura-
tion for a 1-configuration static search and the predicted configuration for the 2-configura-
tion static search or the dynamic search. This limitation will be removed in a future
release.

Interaction Point;

Gap:
Unit Surface Normal:

> Q X

Figure 4. 3D NodeSurface Interaction Data

Table 2. NodeSurface Interaction Datafor 3D

Location _ Quantity
(Fortran Indexing)
1-3 Interaction Point (X, y & z coordinates)
4 Gap
5-7 Unit Surface Normal (X, y & z components)

22

Introduction

1.4 Search Options
1.4.1 MultipleInteractionsat a Node

By default, ACME defines only one interaction at a node. If potentia interactions with
more than one face are detected, ACME will return only one interaction (the best one, ac-
cording to the algorithm used for competition between two interactions) to the host code.
However, to get better behavior at a true corner of a body, multiple interactions with the
faces surrounding the corner should be considered. Therefore, if desired, ACME can de-
fine multiple interactions at a node. When this feature is activated, the host code must
specify an angle (in degrees) called SHARP-NON_SHARP_ANGLE. If the angle be-
tween connected faces (computed as the angle between the normalsto the faces, asin Fig-
ure5.) isgreater than SHARP-NON_SHARP_ANGLE, then an interaction will be defined
for each face, instead of competition between the two to define one interaction. If the mul-
tiple interactions feature is not active, interactions with only one of two disconnected faces
will be returned (see Figure 6.). Interactions with disconnected faces will be returned to
the host code regardless of the angle.

0 0 is the angle between faces

Figure 5. Definition of Angle Between Faces

Configuration Interactions for Interactions with
Single Interaction Multiple Interactions

Figure 6. Interactionsfor Single vs. Multiple Interaction Definition

23

I ntroduction

1.4.2 Normal Smoothing

As previously noted, a NodeFace Interaction consists of a contact point, a normal gap, a
pushback direction, and a normal direction. The normal direction is an approximation of
the normal to the surface at the contact point, which by default is simply the normal to the
face. In some cases, however, it is necessary to have a continually varying normal without
abrupt changes (e.g., when transitioning across an edge). The normal smoothing capability
compuites, if appropriate, a “smoothed” normal that varies continuously as a node transi-
tions between faces. Smoothing occurs if the contact point is within a user-specified dis-
tance to the edge and if the included angle between the faces is less than the SHARP-
NON_SHARP_ANGLE (see Figure 1). The contact point, normal gap, and pushback di-
rection are not modified by normal smoothing.

Lttt e

= NOrmal Smoothing Area

Figure 7. Norma Smoothing Across an Edge

When activating this feature, the host code must specify a SHARP-
NON_SHARP_ANGLE (in degrees), a norma smoothing distance, and a
RESOLUTION_METHOD for cases when a unique solution cannot be determined. If the
angle between two faces is greater than the SHARP-NON_SHARP_ANGLE, then the
edge is considered SHARP and no smoothing will be done to the normal. The angle spec-
ified for normal smoothing must match the angle specified for multiple interactions if that
capability is active.

The normal smoothing distance (SD) specifies the region over which norma smoothing

occurs (see Figure 8.). This distance is in isoparametric coordinates, so its value ranges
from 0 to 1 (in theory), but for practical purposes, 0.5 isan upper bound.

n
(1.1)

7 -
/ /\(1'5[)’1'5[)) Lo Areawithout normal smoothing

3 Areawith normal smoothing

-
% / / / //—/ (.,.) Isoparametric Coordinates

Figure 8. Region of Normal Smoothing for a QuadFacel 4

24

Introduction

For the case when a unique solution does not exist for a smoothed normal, two resolution
methods are provided: USE_NODE_NORMAL and USE_EDGE_BASED _NORMAL.
To illustrate the differences between these two approaches, consider Figure 9.. This exam-
ple consists of five faces in the configuration shown, and uses a SHARP-NON-
SHARP_ANGLE of 30 degrees. The angles between faces 1 and 5 and between faces 3
and 4 are greater than the SHARP-NON_SHARP_ANGLE, so the smoothing algorithm
should not smooth between these faces. Smoothing is done between faces 1 and 2 and be-
tween faces 2 and 3, because the corresponding angles are less than 30 degrees. For points
approaching the shared intersection of faces 1, 2, and 3, however, the two options ACME
provides for determining the smoothed normal deliver different results. The
USE NODE_NORMAL option defines the normal at the intersection point to be the node
normal and thus provides a continuously smooth normal in the region near the point. The
problem with this approach in this particular caseis that the node normal also includes the
effects of faces 4 and 5, and thus effectively provides smoothing over the boundary be-
tween faces 1 and 5. Alternatively, the USE_EDGE_BASED_NORMAL option only con-
siders smoothing between a pair of faces. This approach ensures that no smoothing occurs
between faces 1 and 5, but it unfortunately can provide a different normal if we approach
the intersection point from face 1 than if we approach the point from face 3. Therefore, the
smoothed normal at the intersection point can be discontinuous, which can cause numeri-
cal problems in some applications. This feature will be addressed further as host codes
gain experience on what approaches provide the best behavior.

—— Non-Sharp Edge
— Sharp Edge

Face 4 R Face 1
ae ° Contact Point

Figure 9. lllustration of Norma Smoothing Resolution

1.5 Explicit Transient Dynamic Enfor cement

An optional explicit transient dynamic enforcement capability is included in this version
of ACME. The agorithm was written assuming that the host code is integrating the equa-
tions of motion using a central difference integrator. It should only be used in conjunction
with the Dynamic_Search_2_Configuration search method. The topology, interactions,
and configurations are taken directly from a ContactSearch object (i.e., the enforcement is
dependent on a ContactSearch object). This capability takes as input the nodal masses
from the host and returns the nodal forces that need to be applied. The algorithms have

25

I ntroduction

been well tested for asingle interaction per node. A beta algorithm isincluded to allow en-
forcement of multiple interactions, although it may not work for all problems. For this re-
lease, the enforcement does not operate on NodeSurface Interactions.

1.6 Gap Removal Enforcement

An optiona gap removal enforcement is aso included in this version of ACME. Initial
gaps often occur in meshes where curved geometries are discretized using varying mesh
densities. The discretization error causes nodes from one (or more) surfaces to penetrate
other surfaces. This initial gap can cause problems in explicit transient dynamic simula-
tions (aswell as other physics simulations) if theinitial gap islarge enough to cause inter-
actions to be missed or if theinitial gap is enforced on the first step, causing alarge force.
An effective method for avoiding these problems is to search for initial gaps and remove
them in a strain-free manner (i.e., the initial topology is modified to remove the initial
gaps). The enforcement object will compute the displacement correction needed to re-
move these initial gaps. Although it is not possible to have all nodes exactly on the faces of
the other surface for curved geometries (it is an overconstrained problem), the gap remov-
al enforcement seeks to satisfy the inequality that al gaps are non-negative with a mini-
mum normal gap.

This enforcement should be used after performing a Static Search 1 Configuration
search. The typical sequence for an explicit transient dynamic simulation would be:

1) Set the Search_Data array appropriate for an initial gap search.
2) Perform a Static_Search_1 Configuration search.
3) Call ContactGapRemoval::Compute_Gap Removal.
4) Apply the displacement correction from step 3 to the topol ogy.
5) Initialization (compute volume, mass, etc. using the modified topology).
6) Set the Search_Data array appropriate for the analysis.
7) Time Step using
a) aDynamic_Search 2 Configuration search;
b) a ContactTDENforcement enforcement.

1.7 Errors

ACME will trap internal errors whenever possible and return gracefully to the host code.
ACME will never try to recover from an error; it will simply return control to the host
code. The host code, therefore, has the final decision of how to proceed. At the moment an
internal error is detected, ACME will immediately return to the host code without attempt-
ing to finish processing or attempting to ensure itsinternal data are consistent. As aresult,
it is essential that the host code check for errors. Interactions may not be reasonable if an
internal error was encountered.

Errors are reported in two ways. First, all public access functions that could encounter an
error return a ContactErrorCode (an enumeration in the ContactSearch header file). This
error return code will be globally synchronized (i.e., all processors will return the same
value).

26

Introduction

The current enumeration for error codesis:

enum Cont act Err or Code{
NO_ERROR = 0,
| D_NOT_FOUND,
UNKNOWN_TYPE,
| NVALI D_I D,
| NVALI D_DATA,
UNI MPLEMENTED_FUNCTI ON,
EXODUS_ERROR} ;

The return value is meant as an easy check for the host code to determine if an error oc-
curred on any processor. It does not specify which processor encountered the error, nor
does it return areal description of the error or the ID (if appropriate) to determine on what
entity the error occurred (e.g., what unimplemented function was called or, possibly in the
future, what face has a negative area). ACME does not normally write any datato the stan-
dard output or error files (stdout or stderr). Instead, ACME provides functions to extract
detailed error information line by line, which the host code can then direct to its own out-
put files as desired. Each line is limited to 80 characters.

1.8 Plotting

ACME can be built with a compile-time option to include an Exodusl| plotting capability.
The host code is responsible for creating the Exodusll file, including the name and loca-
tion of the plot file. It is also responsible for closing the file after ACME writes its data.
Because ACME writes double precision data, this file must be created with the Exodusl|
parameter ICOMPWS set to 8.

If the host code desires a plot file from ACME, it must create a new file for each time step.
This capability is primarily intended as a debugging tool and is not envisioned for use in
production calculations. Since the host code specifies the mesh topology and has access to
the interactions, it has the ability to include the interaction datain its normal plotting func-
tionality asit seesfit.

The mesh coordinates for each plot file are aways taken as those in the current configura-
tion. The displacements are the differences between the predicted and current coordinates
if the predicted coordinates have been specified; otherwise the displacements are set to ze-
ro. Each Face Block is treated as an element block (TRI3 for TRIFACEL3, TRI6 for
TRIFACEQG6, and SHELL for QUADFACEL4 and QUADFACEQS). Additional element
blocks, one for each edge type, are created to represent the edges (BAR for LineEdgel 2
and BAR3 for LineEdgeQ3). Because Exodusll does not support node blocks, al the
nodes are output without their associated Node Block.

The nodal output variables include both the nodal data (displacement and node normal)
and the interactions. The interactions are output for their associated node, rather than with
the face. Currently, up to three interactions at a node can be output, with no meaning at-
tached to their order. If anode has no interactions, all of the interaction data for that node
will be zero. If anode has one interaction, the second and third sets of interaction datawill

27

I ntroduction

all be zero, etc. Table 3. gives a description of al the nodal data written to the Exodusl|

file.
Table 3. Nodal Variables for Exodusl Output
Name Description

displ[xyz] X, Y & Z components of displacement

nnorm[xyz] X, Y & Z components of the unit node normal

numcon number of kinematic constraints at the node

convec[xyz| X, Y & Z components of kinematic constraint vector (provided by host)

face id[123] The ID of the face involved in interaction 1, 2, or 3 (0 if no interaction)

alg[123] algorithm used to define interaction 1, 2, or 3
(1=closest point projection for 1-configuration search,
2=closest point projection for 2-configuration search,
3=moving_intersection)

gap[123] The Gap for interaction 1, 2, or 3 (0 if no interaction)

pbdir[123][xyz] | X, Y, & Z components of the pushback direction for interaction 1, 2, or 3
(Oif no interaction)

ivec[123][xyz] | X, Y, & Z components of avector that, when drawn from the node, gives
the location of the interaction point for interaction 1, 2, or 3 (0 if no
interaction).

norm[123][xyz] | X, Y, & Z components of the normal to the surface at the interaction
point for interaction 1, 2, or 3.

iveca]xyz] X,Y, & Z components of avector that, when drawn from the node, gives
the location of the interaction point with an Analytic_Surface (O if no
interaction). Thisitemisincluded only for problems with
Analytic_Surfaces.

EnfVar[xyz] X, Y, & Z components of a vector that is the force for ContactTDEN-

forcement and the displacement correction for ContactGapRemoval.

The“element” data actually consist of the face and edge data (since both are output as ele-
ment blocks). Table 4. gives the names and descriptions of the element data written to the

Exodusl| file.

28

Table 4. Element Variables for Exodusll Output

Introduction

Name Entity Description
fnorm[xyz] Faces Unit face normal at centroid
curvature Edge 0 = Unknown

1 = Convex
2 = Concave

3 = Concave with smoothing
4 = Convex with smoothing

29

I ntroduction

30

C++ Application Programming Interface (API)

2. C++ Application Programming I nterface (API)

The C++ API dlows for direct construction of ContactSearch, ContactT DEnforcement,
and ContactGapRemoval objects. There are no static variables, so an arbitrary number of
objects may be simultaneously active.

There are two constructors for the ContactSearch object. The first is intended for general
use. The second is used to construct a search object for restart that is identical to the one
written to arestart file in a previous calculation. The ContactSearch object is neither copy-
able or assignable.

Thereis currently only one constructor each for the ContactTDENnforcement and Contact-
GapRemoval objects, which are intended for general use. A constructor for restarts is not
yet available since there is no internal data needed upon restart.

2.1 Version and Date

ACME provides functions to extract its current version number and release date. In addi-
tion, a function is provided to check the compile-time compatibility of the ACME library
and the host code with respect to the MPI library.

2.1.1 Version

The following function returns the version of ACME, which is a character string of the
form x.yz, where x is an integer representing the major version, y is an integer represent-
ing the minor version, and z is a letter representing the bug fix level. This version of
ACME is0.3a. The function prototypeis:

const char* Contact Search:: Version();

2.1.2 VersionDate

The following function returns the release date for ACME, which is a character string of
the form ‘January 5, 2000" (the current release date). The prototype for thisfunctionis:

const char* Contact Search:: Versi onDate();

2.1.3 Contact_ MPI_Compatibility

The following function returns an error if the compilations of the host code and the ACME
library are incompatible with respect to the MPI library. The prototype for thisfunction is:

int Contact_MPI_Conpatibility(int host_conpile);

The host code should call this function with the host_compile argument set to
MPI_COMPILE, which is defined in the ContactSearch header file to be 0 if
CONTACT_NO_MPI is defined at compile time, and defined as 1 otherwise. This func-

31

C++ Application Programming Interface (API)

tion will check for compatibility with the value of MPI_COMPILE defined during compi-
lation of the ACME library.

2.2 Errors

As discussed in Section 1.7, there are C-style character strings that can be extracted that
give a detailed description of what error(s) occurred. These strings are specific to the cur-
rent processor. Therefore, each processor may have a different number of error messages.

2.2.1 Number_of Errors
The following function determines how many error messages the current processor has:

i nt Contact Search: : Nunber_of Errors();

222 Error_Message

The following function can be used to extract the character strings for each error message
on this processor (the number of which can be determined by the function in the previous
section):

const char* Contact Search:: Error_Message(int i);
where

i isthe Fortran index of the error message (i.e., 1 to Number_of Errors())

2.3 Creating a ContactSearch Object

Thereisone general constructor for the ContactSearch object. A second constructor for re-
start is described in Section 2.11.

2.3.1 ContactSearch

The prototype for this constructor is:

Cont act Sear ch: : Cont act Sear ch(
int dinmensionality,
i nt nunber of st ates,
i nt nunber_of entity_keys,
i nt nunber of node_ bl ocks,
const Cont act Node_Type* node_bl ock_t ypes,
const int* nunmber of nodes_in_bl ocks,
const int* node_gl obal _ids,
i nt nunber of face bl ocks,
const Cont act Face_Type* face_bl ock_types,
const int* nunber of faces_ in_blocks,
const int* connectivity,
i nt nunber _of nodal _comm partners,

32

where;

C++ Application Programming Interface (API)

const int* nodal _comm proc_ids,

const int* nunber_of _nodes_to_partner,
const int* communi cati on_nodes,

const MPI _Conm& npi _conmuni cat or,

Cont act Error Code& error);

dimensionality is the number of spatial coordinates in the topology. Note: We are only supporting
three dimensionsin this release. Two-dimensional support will be added in the future.

number_of_states is the number of states the host code requests to be stored. A value of 1 implies
that the ContactSearch object can not back up to an older state. A value of 2 will imply the
ContactSearch object can back up to one old state, etc. For this release, this value must be
1

number_of_entity_keysis the number of entity keys that will be used. Thisis currently the sum of
the number of Face Blocks and the number of Analytic_Surfaces.

number_of_node_blocks is the number of Node Blocks in the topology. Currently, since we only
support one type of node (namely NODE), we only support one Node Block.

node_block_typesis an array (of length number_of node_blocks) describing the type of nodes in
each Node_Block. The current enumeration for thistype (part of the ContactSearch header
file) is:

enum Cont act Node_Type{ NODE=1 };

number_of _nodes_in_blocksis an array (of length number_of node_blocks) that gives the number
of nodesin each Node Block.

node_global_idsisan array containing the host code ID for each node.

number_of face blocksisthe number of Face Blocksin the topology.

face block_types is an array (of length number_of face blocks) describing the type of faces in
each Face Block. The current enumeration for this type (part of the ContactSearch header
file) is:

enum Cont act Face_Type{ QUJADFACEL4=1, QUADFACE(S,
TRI FACEL3, TRI FACEQG};

number_of faces in blocksis an array (of length number_of face blocks) that gives the number
of facesin each Face Block.

connectivity is a one-dimensional array that gives the connectivity (using Fortran indexing in the
one and only Node Block) for each face. This may change when multiple Node Blocks
are supported.

number_of_nodal_comm_partners is the number of processors that share nodes with the topology
supplied to ACME on the current processor.

nodal_comm_proc_idsis an array (of length number_of _nodal_comm_partners) that lists the pro-
cessor | Ds that share nodes with the topology supplied to ACME on the current processor.

number_of _nodes to partner is an array (of length number_of nodal_comm_partners) that gives
the number of nodes shared with each processor in hodal_comm_proc _ids.

communication_nodes is an array that lists the nodes in the topology supplied to ACME that are
shared, grouped by processor in the order specified in nodal_comm_proc _ids.

mpi_communicator is an MPI_Communicator.

error isthe error code. This reflects any errors detected during execution of this method.

If the ACME library isbuilt in pure serial mode (i.e., CONTACT_NO_MPI isdefined dur-
ing compilation), then number_of nodal_comm_partners should be set to 0 and dummy
pointers can be supplied for nodal_comm_proc _ids, number_of _nodes to _partner, and
communication_nodes. Furthermore, any integer value can be used for
mpi_communicator, which isignored.

33

C++ Application Programming Interface (API)

24 Search Data

As described in Section 1.1.4, Search Data is a three-dimensional Fortran-ordered array
for specifying entity pair data. Thefirst index in the array refers to the data parameter, and
the next two indexes refer to the keysfor the two entities for which that parameter is appli-
cable.

24.1 Check _Search Data Size

The following interface alows for checking the size of Search_Data expected by ACME.
This is intended to be a check by the host code to ensure that ACME and the host code
have a consistent view of the Search_Data array.

Cont act Err or Code Cont act Sear ch: : Check_Search_Dat a_Si ze(
int size_data_per_pair,
i nt nunber _of _entity_keys);
where
Size data per_pair isthe number of data parameters for each entity pair (currently 3).

number_of entity keysisthe number of entity keys.

24.2 Set Search Data

The following interface allows the host code to specify the Search_Data array (see Section
1.1.4), which must be set prior to calling any of the search algorithms. This function can
be called at any time to change values in the Search_Data array (e.g., to change toleranc-
€s).

voi d Cont act Search:: Set _Search_Dat a(const doubl e* search_data);

25 Analytic_Surfaces

ACME supports the determination of interactions of nodes with Analytic_Surfaces. Cur-
rently, the only supported Analytic_Surfaces are a plane, a sphere, and two types of cylin-
ders (one for a container and one for a post). The types of Analytic_Surfaces supported
will be expanded in the future. The ACME ID for an Analytic_Surface is the number of
face blocks plus the order in which the surface was created.

The current enumeration for Analytic_Surface Typeis:

enum Anal ytic_Surface_Type{
PLANE=1, SPHERE, CYLINDER I NSIDE, CYLINER QUTSIDE };

251 Add_Analytic Surface

The interface to add an Analytic_Surfaceis:

Cont act Err or Code Cont act Sear ch:: Add_Anal yti c_Surface(

C++ Application Programming Interface (API)

Anal yti cSurface_Type as_type,
const doubl e* as_data);

where as _data is an array dependent on the type of surface being added, as type. The
Analytic Surface PLANE is described by a point and a norma vector. The
Analytic_Surface SPHERE is described by its center and a radius. Two types of cylindri-
cal surfaces are supported: CYLINDER_INSIDE & CYLINDER OUTSIDE.
CYLINDER _INSIDE isintended as a cylindrical container which will define interactions
to keep all nodes inside the cylinder. CYLINDER_OUTSIDE isintended as a post which
will define interactions to keep all nodes outside the cylinder. Both types of cylindrical
surfaces are described by a center point, an axial direction, and a length (See Figure 10.).
Table 5. gives a complete description of the array data for each Analytic_Surface type.

aNDirection

Figure 10. Analytic Cylindrical Surfaces

Table 5. C++ Data Description for Analytic_Surfaces

Cylinder_ Cylinder_
Plane Sphere Inside Outside
as data[0] X-Coordinate X-Coordinate X-Coordinate X-Coordinate
of Point of Center of Center of Center
as data[1] Y-Coordinateof | Y-Coordinateof | Y-Coordinateof | Y-Coordinateof
Point Center Center Center
as data[2] Z-Coordinateof | Z-Coordinateof | Z-Coordinateof | Z-Coordinateof

Point

Center

Center

Center

35

C++ Application Programming Interface (API)

Table 5. C++ Data Description for Analytic_Surfaces

Cylinder_ Cylinder_
Plane Sphere Inside Outside

as _datq[3] X-Component Radius X-Component | X-Component
of Normal Vec- of Axial Vector | of Axial Vector
tor

as data[4] Y-Component Y-Component Y-Component
of Normal Vec- of Axial Vector | of Axial Vector
tor

as data[5] Z-Component Z-Component Z-Component
of Normal Vec- of Axial Vector | of Axia Vector
tor

as_datq[6] Radius Radius

as data[7] Length Length

25.2 Set Analytic_Surface Configuration

The following interface updates the configuration(s) for an Analytic_Surface. This method
has not yet been implemented in ACME, and returns an error if called.

Cont act Error Code Cont act Sear ch: : Set _Anal yti c_Surface_Confi gurati on(
int as_id,
const doubl e* as_data);
where
as idisthe ACME ID for the Analytic_Surface.
as dataisdescribed in Table 5..

2.6 Node Block Data

Currently the only valid type of Node Block is NODE, which has no attributes. Future
versions will include NODE_WITH_SLOPE and NODE_WITH_RADIUS.

2.6.1 Set_Node Block_Configuration

The following interface allows the host code to specify the configuration(s) for the nodes
by Node Block. Thisfunction can be called at any time but must be called prior to thefirst
search. For a one-configuration search, only the current configuration needs to be speci-
fied. For two-configuration searches, both current and predicted configurations must be

36

C++ Application Programming Interface (API)

specified. This function should be called every time the nodal positions in the host code
are updated. The prototype for thisfunction is:

Cont act Error Code Cont act Search: : Set _Node_ Bl ock_Confi gurati on(
Cont act Node_Confi guration config type,
i nt node_bl ock_id,
const doubl e* positions);

where:

config_type is an enumeration in the ContactSearch header file:
enum Cont act Node_Confi gurati on{
CURRENT_CONFI G=1,
PREDI CTED_CONFI G ;
node block_id isthe ACME ID for the Node Block.
positionsis an array that holds the nodal positions for every nodein the Node_Block.

2.6.2 Set Node Block Attributes

The following function will be used to add the slope for NODE_WITH_SL OPE or the ra-
diusfor NODE_WITH_RADIUS when these types are supported. Currently, this function
returns an error if it iscalled.

Cont act Error Code Set _Node_Bl ock_Attri but es(
Cont act Node_Confi guration config type,
i nt node_bl ock_i d,
const double* attributes);

where
config_type isthe type of configuration, either CURRENT_CONFIG or PREDICTED_CONFIG.
node_block_id isthe ACME ID for this Node Block.
attributes is an array of the attributes for this Node _Block.

2.7 Search Algorithms

2.7.1 Set_Search_Option

By default, both multiple interactions and normal smoothing options are inactive. The fol-
lowing function should be called to activate, deactivate, and control multiple interactions
and normal smoothing.

Cont act Error Code Cont act Search: : Set _Sear ch_Opti on(
Search_Option option,
Search_Option_Status status,
doubl e* data);

where

37

C++ Application Programming Interface (API)

option is an enumeration in the ContactSearch header file:
enum Search_Option {
MULTI PLE_| NTERACTI ONS,
NORMAL_ SMOOTHI NG} ;
status is another enumeration in the ContactSearch header file:
enum Search_Option_Status {
I NACTI VE=0,
ACTI VE} ;
datais an array whose first member contains the angle above which the edge between facesis con-
sidered to be sharp instead of non-sharp (rounded), and whose second and third members
(valid only for the NORMAL_SMOOTHING option) contain the distance in isoparamet-
ric coordinates over which normal smoothing is calculated and the smoothing resolution,
respectively.

2.7.2 Static_Search_1 Configuration
This search algorithm can be called only after a current configuration has been specified.

Cont act Error Code Cont act Search:: Static_Search_1 Configuration();

2.7.3 Static_Search _2 Configuration

This search algorithm can be called only if both current and predicted configurations have
been specified.

Cont act Error Code Cont act Search: : Static_Search_2 Configuration();

2.74 Dynamic_Search_2 Configuration

The dynamic search can be called only if both the current and predicted configurations
have been specified.

Cont act Err or Code Cont act Sear ch: : Dynam c_Search_2 Confi guration();

2.8 Extracting NodeFace | nteractions

The functions in this section allow the host code to extract the NodeFace Interactions
from the ContactSearch object. Typically, the host code should determine how much
memory is needed to hold the interactions using the function in Section 2.8.1 and then ex-
tract the NodeFace Interactions using the function in Section 2.8.2.

2.8.1 Size NodeFace |Interactions

The following function alows the host code to determine how many
NodeFace Interactions are currently defined in a ContactSearch object and the data size
for each interaction.

38

C++ Application Programming Interface (API)

voi d Cont act Search:: Si ze_NodeFace_I nteracti ons(

where

282

i nt & nunber _of i nteracti ons,
int& nfi_data_size);

number_of _interactions is the number of active NodeFace Interactions that will be returned by the
function Get_NodeFace_|nteractions (see the next section).
nfi_data_sizeisthe size of the data returned for each interaction.

Get_NodeFace Interactions

The following function allows the host code to extract the active NodeFace_Interactions
from the ContactSearch object. The prototype for thisfunctioniis:

voi d Cont act Search: : Get _NodeFace_| nteracti ons(

where

int* node_bl ock_ids,

i nt* node_indexes_in_block
int* face bl ock ids,

int* face_ indexes_ in_block
int* face_procs,

doubl e* nfi_data);

node_block_idsisan array (of length number_of interactions) that containsthe Node Block ID for
the node in each interaction.

node_indexes in_block is an array (of length number_of _interactions) that contains the index in
the Node Block (using Fortran indexing conventions) for the node in each interaction.

face block _idsisan array (of length number_of _interactions) that contains the Face Block ID for
the face in each interaction.

face indexes in_block isan array (of length number_of interactions) that contains the index in the
Face Block (using Fortran indexing conventions) for the face in each interaction.

face procsisan array (of length number_of interactions) that contains the processor that owns the
face in each interaction.

nfi_data is an array (of length number_of interactions*nfi_data size) that contains the data for
each interaction (See Section 1.3.1). The data for each interaction is contiguous (i.e., the
first nfi_data size locations contain the data for the first interaction).

2.9 Extracting NodeSurface Interactions

The functions in this section alow the host code to extract the NodeSurface Interactions
from the ContactSearch object. Typically, the host code would determine how much mem-
ory is needed to hold the interactions and then extract the NodeSurface_|nteractions using
the functionsin this section.

291

Size NodeSurface Interactions

The following function allows the host code to determine how many interactions are cur-
rently defined in a ContactSearch object and the data size for each interaction.

39

C++ Application Programming Interface (API)

voi d Cont act Search: : Si ze_NodeSurface_Interactions(
i nt & nunber _of i nteracti ons,
int& nsi_data_size);

where

number_of _interactions are the number of active NodeSurface Interactions that will be returned by
the function Get_NodeSurface | nteractions (see the next section).
nsi_data sizeisthe size of the data returned for each interaction.

2.9.2 Get_NodeSurface Interactions

The following function alows the host code to extract the active
NodeSurface Interactions from the ContactSearch object. The prototype for this function
is:

voi d Constact Search:: Get _NodeSurface_ I nteractions(
i nt* node_bl ock i ds,
i nt* node_i ndexes_i n_bl ock,
int* anal yticsurface_ids,
doubl e* nsi _data);

where

node _block_idsisan array (of length number_of _interactions) that containsthe Node Block ID for
the node in each interaction.

node_indexes in_block is an array (of length number_of interactions) that contains the index in
the Node Block (using Fortran indexing conventions) for the node in each interaction.

analyticsurface ids is an array (of length number_of interactions) that contains the ID of the
Analytic_Surface for each interaction.

nsi_data is an array (of length number_of_interactions*nsi_data size) that contains the data for
each interaction (See Section 1.3.2). The data for each interaction is contiguous (i.e., the
first nsi_data_size locations contain the data for the first interaction).

2.10 Exodusl| Plotting

ACME has the ability to write an Exodusl| file that contains the full search topology and
all of the interaction data, including enforcement results. This function can be used only if
ACME was built with Exodusl| support (a.compile time option). See Section 1.8 for a de-
tailed description of the data written to the Exodusl| file. The host code is required to actu-
ally open and close the Exodusl | file, so it must choose the name and location for the file.
This file must be opened with ICOMPWS=8. The Exodusl! ID is then passed to ACME,
which writes the topology and the results data.

2.10.1 Exodus Output

The prototype for this capability is

40

C++ Application Programming Interface (API)

Cont act Err or Code Cont act Sear ch: : Exodus_Qut put (
i nt exodus_id,
double tinme);
where
exodus id istheinteger database ID returned by the Exodusl| library from an ex_create call.
timeisthe time value for the “results’ to be written to the Exodusl file.

2.11 Restart Functions

The search object supports restart through a binary data stream that the host code can ex-
tract for writing to afile, and it provides a separate constructor to initialize the Contact-
Search object to its previous state.

2.11.1 Restart_Size

The following function allows the host code to determine how large of an array to allocate
for the ContactSearch object to give its restart information. The return value is the number
of double locations that are needed.

i nt ContactSearch::Restart_Si ze();

2.11.2 Extract_Restart Data

The following function allows the host code to extract all the information needed to initial-
ize a ContactSearch object to its current state.

Cont act Error Code Cont act Search: : Extract _Restart _Dat a(
doubl e* restart_data);

where

restart_data is an array of type double. The length of this array is obtained from the function
Restart_Size() (see the previous section).

2.11.3 ContactSearch (restart)
As noted above, a second constructor is available to allow for restarts:
Cont act Sear ch: : Cont act Sear ch(
const doubl e* restart_dat a,
const MPI _Conm& npi _conmuni cat or,
Cont act Error Code& error);

where

41

C++ Application Programming Interface (API)

restart_data is an array of type double. The length of this array is obtained from the function
Restart_Size() (see the previous section).

mpi_communicator is currently unused (it is treated asint currently).

error isthe error code that will reflect any errors that were detected.

2.12 Registering an Enforcement Object with the Search

To alow for enforcement data to be plotted on the optional Exodusl| plot files (see section
2.10), an Enforcement object may be registered with a ContactSearch object. Thisis an
entirely optional feature and is only useful if the host code is requesting ACME to create
Exodusl| plot files.

2.12.1 Register_Enforcement

The following function may be called for either a ContactTDENnforcement or a Contact-
GapRemoval object. The ContactTDEnNforcement object will add the contact force to the
plotting database and the ContactGapRemoval object will add the displacement correction
to the plotting database; both objects will store the data in variables called EnfVarx, Enf-
Vary, and EnfVarz.

voi d Regi ster_Enforcenent (
Cont act Enf or cenent * enf orcenent);

where
enforcement is either a ContactTDEnforcement object or a ContactGapRemoval object.
2.13 Creating a ContactTDEnforcement Object

There is one genera purpose constructor for the ContactTDEnforcement object. A con-
structor for restart use is not yet available. The only data required for restart is the En-
forcementData, which the host code can get from the input deck.

2.13.1 ContactTDEnforcement
The prototype for the ContactTDEnforcement constructor is:

Cont act TDEnf or cenent : : Cont act TDEnf or cenent (
doubl e* Enforcenent Dat a,
Cont act Sear ch* search,
Cont act Sear ch: : Cont act Err or Code& error);

where

Enforcement_Dataisareal array (of length (number of entity keys)* (number of entity keys)) which
gives the kinematic partition factor (similar to Search_Data). The kinematic partition fac-
tor controls the master/dave relationship between two entities.

search is the ContactSearch object from which the topology, interactions and configurations are ob-
tained.

error isthe error code that will reflect any errors that were detected.

42

C++ Application Programming Interface (API)

2.14 Extracting Contact Forces
2.14.1 Compute_Contact_Force

This member function computes the contact forces necessary to enforce the contact con-
straints that are contained in the ContactSearch object.

Cont act Err or Code Cont act TDEnf or cenent : : Conput e_Cont act _For ce(
doubl e dt ol d,
doubl e dt,
const doubl e* nass,
doubl e* force);

where

dt_old isthe previous time step for a central difference integrator.
dt isthe current time step for a central difference integrator.
massis an array that contains the nodal mass for each node.
forceisthe return array containing the computed contact forces.

2.15 Creating a ContactGapRemoval Object

There is one general purpose constructor for the ContactGapRemoval object. A construc-
tor for restart use is not yet available. The only data required for restart is the Enforce-
mentData which the host code can get from the input deck. The prototype for the
ContactTDENforcement constructor is:

Cont act GapRenoval : : Cont act GapRenoval (
doubl e* Enforcenent Dat a,
Cont act Sear ch* search,
Cont act Sear ch: : Cont act Err or Code& error);

where

Enforcement_Dataisareal array (of length (number of entity keys)* (number of entity keys)) which
gives the kinematic partition factor (similar to Search_Data). The kinematic partition fac-
tor controls the master/dave relationship between two entities.

search is the ContactSearch object from which the topology, interactions and configurations are ob-
tained.

error isthe error code that will reflect any errors that were detected.

2.16 Extracting the Gap Removal Displacements

This member function computes the displacement increments necessary to remove any
initial gaps that are contained in the ContactSearch object topology. A
Static_ Search 1 Configuration search should be used to define the interactions prior to
calling this member function (regardless of the type of mechanics being solved).

Cont act Error Code Cont act GapRenoval : : Conput e_Gap_Renoval (
doubl e di spl _cor);

43

C++ Application Programming Interface (API)

where

displ_cor is the displacement correction needed at each node to remove the initial gaps.

C Application Programming Interface (API)

3. C Application Programming I nterface (API)

The C APl isacollection of functions that have a pure C interface. These functions oper-
ate on the ContactSearch and ContactTDEnforcement objects, only one of each of which
iscurrently allowed. Functions are provided to allow destruction of ContactSearch or Con-
tactTDENnforcement objects and creation of new objects at any point. Multiple objects can
be supported in the future if the need ever arises.

The FORTRAN() macro converts the function by appending an underscore to the end of
the function name. This macro is used because, in actuality, the C and Fortran APIs have
been combined into a single interface. Because of this, in the C API, all data must be
passed by address, not by value.

Two header files include the prototypes for the functions described in this chapter. The
files are Search_Interface.h in the search directory and Enforcement_Interface.h in the en-
forcement directory.

3.1 Version and Date

ACME provides functions to extract its current version number and release date. In addi-
tion, afunction is provided to check the compile-time compatibility of the ACME library
and the host code with respect to the MPI library.

3.1.1 version

The following function returns the version of ACME, which is a character string of the
form x.yz, where x is an integer representing the major version, y is an integer represent-
ing the minor version, and z is a letter representing the bug fix level. This version of
ACME is0.3a. The function prototypeis:

voi d FORTRAN(version)(char* vers);
where

versisan array of characters of length 81 (including terminal ‘\n’).

3.1.2 versiondate

The following function returns the release date for ACME, which is a character string of
the form * January 5, 2000 (the current release date). The prototype for thisfunction is:

voi d FORTRAN(versi ondate)(char* vers_date);
where

vers dateisan array of characters of length 81 (including terminal ‘\n’).

45

C Application Programming Interface (API)

3.1.3 contact_mpi_compatibility

The following function returns an error if the compilations of the host code and the ACME
library are incompatible with respect to the MPI library. The prototype for thisfunction is:

voi d FORTRAN(cont act _npi _conpatibility)(
i nt* host_conpil e,
int* error);

where

host_compileisthe value of MPI_COMPILE used during compilation of the host code.
error isthe error code.

The host code should call this function with the host_compile argument set to
MPI_COMPILE, which is defined in the ContactSearch header file to be O if
CONTACT_NO_MPI is defined at compile time, and defined as 1 otherwise. This func-
tion will check for compatibility with the value of MPI_COMPILE defined during compi-
lation of the ACME library.

3.2 Errors

As discussed in Section 1.7, there are C-style character strings that can be extracted that
give a detailed description of what error(s) occurred. These strings are specific to the cur-
rent processor. Therefore, each processor may have a different number of error messages.

3.21 number_of search errors
The following function determines how many error messages the current processor has:

voi d FORTRAN(nunber _of search_errors)(int* numerrors);

3.2.2 get_search_error_message

The following function can be used to extract the character strings for each error message
on this processor (the number of which can be determined by the function in the previous
section):

voi d FORTRAN(get search_error_nessage)(int* i, char* nessage);
where

i isthe Fortran index of the error message (i.e., 1 to num_errors).
message is an array of characters of length 81 (including terminal ‘\n’).

46

C Application Programming Interface (API)

3.3 Creating a ContactSearch “Object”

331

build_search

The following function “constructs’ a ContactSearch object for the C API. This function
must be called prior to any other calls described in the API.

voi d FORTRAN(bui | d_sear ch) (

where

int* dinensionality,

int* nunber of states,

i nt* nunber_of _entity_keys,

i nt* nunber _of node_ bl ocks,

i nt* node_bl ock_types,

i nt* nunber _of nodes i n_bl ocks,
i nt* node_gl obal _ids,

i nt* nunber of face_ bl ocks,
int* face_ bl ock_types,

int* nunber _of faces in_bl ocks,
int* connectivity,

i nt* nunber_of nodal _conm partners,
i nt* nodal _comm proc_ids,

i nt* nunber_of nodes_to_partner
nt* comuni cati on_nodes,

MPI _Commt npi _contuni cat or,
int* error);

dimensionality is the number of spatial coordinates in the topology. Note: We are only supporting
three dimensionsin this release. Two-dimensional support will be added in the future.

number_of _states is the number of states the host code requests to be stored. A value of 1 implies
that the ContactSearch object can not back up to an older state. A value of 2 will imply the
ContactSearch object can back up to one old state, etc. For this release, this value must be
1

number_of_entity keysisthe number of entity keys that will be used. Thisis currently the sum of
the number of Face Blocks and the number of Analytic_Surfaces.

number_of _node_blocks is the number of Node Blocks in the topology. Currently, since we only
support one type of node (namely NODE), we only support one Node Block.

node_block_typesis an array (of length number_of node blocks) describing the type of nodesin
each block. Currently, the only accepted type value for aNode Block is 1 (NODE).

number_of _nodes in_blocksisan array (of length number_of node blocks) that gives the number
of nodesin each Node Block.

node_global_idsisan array containing the host code ID for each node.

number_of face blocksisthe number of Face Blocks in the topology.

face block _types is an array (of length number_of face blocks) describing the type of faces in
each Face Block. Accepted vaues are QUADFACEL4=1, QUADFACEQ8=2,
TRIFACEL3=3, TRIFACEQ6=4.

number_of faces in blocksis an array (of length number_of face blocks) that gives the number
of facesin each Face Block.

connectivity is a one-dimensional array that gives the connectivity (using Fortran indexing in the
one and only Node Block) for each face. This may change when multiple Node Blocks
are supported.

47

C Application Programming Interface (API)

number_of _nodal_comm_partners is the number of processors that share nodes with the topology
supplied to ACME on the current processor.

nodal_comm_proc_idsis an array (of length number_of_nodal_comm_partners) that lists the pro-
cessor | Ds that share nodes with the topology supplied to ACME on the current processor.

number_of _nodes to partner is an array (of length number_of _nodal_comm_partners) that gives
the number of nodes shared with each processor in nodal_comm_proc _ids.

communication_nodes is an array that lists the nodes in the topology supplied to ACME that are
shared, grouped by processor in the order specified in nodal_comm_proc _ids.

mpi_communicator is an MPI_Communicator.

error isthe error code. This reflects any errors detected during execution of this method.

If the ACME library isbuilt in pure serial mode (i.e., CONTACT_NO_MPI is defined dur-
ing compilation), then number_of _nodal_comm_partners should be set to 0 and dummy
pointers can be supplied for noda _comm_proc ids, number_of nodes to partner, and
communication_nodes. Furthermore, any integer value can be used for
mpi_communicator, which isignored.

34 Search_Data

As described in Section 1.1.4, Search_Data is a three-dimensional Fortran-ordered array
for specifying entity pair data. The first index in the array refers to the data parameter, and
the next two indexes refer to the keys for the two entities for which that parameter is appli-
cable.

3.4.1 check _search _data size

The following interface alows for checking the size of Search_Data expected by ACME.
This is intended to be a check by the host code to ensure that ACME and the host code
have a consistent view of the Search_Data array.

voi d FORTRAN(check_sear ch_dat a_si ze) (
int* size data per_pair,
i nt* nunber_of entity keys,
int* error);

where
Size data per_pair isthe number of data parametersfor each entity pair (currently 3).
number_of entity keysisthe number of entity keys.
error isthe error code.

3.4.2 set search_data

The following interface allows the host code to specify the Search_Data array (see Section
1.1.4), which must be set prior to calling any of the search algorithms. This function can
be called at any time to change values in the Search_Data array (e.g., to change toleranc-
€s).

voi d FORTRAN(set search_data)(doubl e* search_data);

48

C Application Programming Interface (API)

3.5 Analytic_Surfaces

ACME supports the determination of interactions of nodes with Analytic_Surfaces. Cur-
rently, the only supported Analytic_Surfaces are a plane, a sphere, and two types of cylin-
ders (one for a container and one for a post). The types of Analytic_Surfaces supported
will be expanded in the future. The ACME ID for an Analytic_Surface is the number of
face blocks plus the order in which the surface was created.

3.5.1 add_analytic_surface
The interface to add an Analytic_Surfaceis:

voi d FORTRAN(add_anal yti c_surface) (
int* anal ytic_surface_type,
doubl e* as_dat a,
int* error);

where

analytic_surface type = 1, 2, 3, or 4 for a PLANE, SPHERE, CYLINDER_INSIDE, or
CYLINDER_OUTSIDE, respectively.

as_datais dependent on the type of Analytic_Surface and is described in Table 6.

error isthe error code.

3.5.2 set_analytic_surface configuration

The following interface updates the configuration(s) for an Analytic_Surface. This method
has not yet been implemented in ACME, and returns an error if called.

voi d FORTRAN(set _anal ytic_surface_configuration)(
int* as_id,
doubl e* as_dat a,
int* error);

where

as_idisthe ACME ID for the Analytic_Surface.

as dataisdescribed in Table 6..

error isthe error code.

Table 6. C Data Description for Analytic_Surfaces
Cylinder_ Cylinder_
Plane Sphere Inside Outside
as data[0] X-Coordinate X-Coordinate X-Coordinate X-Coordinate
of Point of Center of Center of Center

49

C Application Programming Interface (API)

Table 6. C DataDescription for Analytic_Surfaces

Cylinder__ Cylinder_
Plane Sphere Inside Outside

as _datq[1] Y-Coordinateof | Y-Coordinateof | Y-Coordinateof | Y-Coordinateof
Point Center Center Center

as _datq 2] Z-Coordinateof | Z-Coordinateof | Z-Coordinateof | Z-Coordinateof
Point Center Center Center

as _datq[3] X-Component Radius X-Component | X-Component
of Normal Vec- of Axial Vector | of Axial Vector
tor

as data[4] Y-Component Y-Component Y-Component
of Normal Vec- of Axial Vector | of Axial Vector
tor

as data[5] Z-Component Z-Component Z-Component
of Normal Vec- of Axial Vector | of Axia Vector
tor

as data[6] Radius Radius

as data[7] Length Length

3.6 Node Block Data

Currently the only valid type of Node _Block is NODE, which has no attributes. Future
versionswill include NODE_WITH_SLOPE and NODE_WITH_RADIUS.

3.6.1 set_node block configuration

The following interface allows the host code to specify the configuration(s) for the nodes
by Node Block. Thisfunction can be called at any time but must be called prior to thefirst
search. For a one-configuration search, only the current configuration needs to be speci-
fied. For two-configuration searches, both current and predicted configurations must be
specified. This function should be called every time the nodal positions in the host code
are updated. The prototype for thisfunction is:

voi d FORTRAN(set node_bl ock_confi guration)(
int* config type
i nt* node_bl ock_id,
doubl e* positions,
int* error);

where

50

C Application Programming Interface (API)

config_type isthe configuration (CURRENT_CONFIG = 1, PREDICTED_CONFIG = 2).
node block_id isthe ACME ID for the Node Block.

positionsis an array that holds the nodal positions for every nodein the Node_Block.

error isthe error code.

3.6.2 set_node block attributes

The following function will be used to add the slope for NODE_WITH_SL OPE or the ra-
diusfor NODE_WITH_RADIUS when these types are supported. Currently, this function
returns an error if it iscalled.

voi d FORTRAN(set _node_bl ock_attri butes)(
int* config_type,
int* node_bl ock id,
doubl e* attri butes,
int* error);

where

config_typeisthe configuration (CURRENT_CONFIG = 1, PREDICTED_CONFIG = 2).
node_block_id isthe ACME ID for this Node Block.

attributes is an array of the attributes for this Node _Block.

error isthe error code.

3.7 Search Algorithms
3.7.1 set_search_option

By default, both multiple interactions and normal smoothing options are inactive. The fol-
lowing function should be called to activate, deactivate, and control multiple interactions
and normal smoothing.

voi d FORTRAN(set search_opti on) (
int* option,
int* status,
doubl e* dat a,
int* error);

where

option may be either 0 (MULTIPLE_INTERACTIONS) or 1 (NORMAL_SMOOTHING}.

status may be O (INACTIVE) or 1 (ACTIVE).

datais an array whose first member contains the angle above which the edge between facesis con-
sidered to be sharp instead of non-sharp (rounded), and whose second and third members
(valid only for the NORMAL_SMOOTHING option) contain the distance in isoparamet-
ric coordinates over which normal smoothing is calculated and the smoothing resol ution,
respectively.

error isthe error code.

51

C Application Programming Interface (API)

3.7.2 static_search_1 configuration
This search algorithm can be called only after a current configuration has been specified.

voi d FORTRAN(static_search_1 configuration)(int* error);

3.7.3 static_search_2 configuration

This search algorithm can be called only if both current and predicted configurations have
been specified.

voi d FORTRAN(static_search_2 configuration(int* error);

3.7.4 dynamic_search_2 configuration

The dynamic search can be called only if both the current and predicted configurations
have been specified.

voi d FORTRAN(dynam c¢c_search_2 configuration)(int* error);

3.8 Extracting NodeFace | nteractions

The functions in this section allow the host code to extract the NodeFace Interactions
from the ContactSearch object. Typically, the host code would determine how much mem-
ory is needed to hold the interactions using the function in Section 3.8.1 and then extract
the NodeFace_|Interactions using the function in Section 3.8.2.

3.8.1 size nodeface interactions

The following function alows the host code to determine how many
NodeFace Interactions are currently defined in a ContactSearch object and the data size
for each interaction.

voi d FORTRAN(si ze_nodef ace_i nteracti ons) (
int* nunber _of interactions,
int* nfi_data_size);
where
number_of_interactions is the number of active NodeFace Interactions that will be returned by the
function Get_NodeFace_|nteractions (see the next section).
nfi_data sizeisthe size of the data returned for each interaction.

3.8.2 get_nodeface interactions

The following function allows the host code to extract the active NodeFace_|nteractions
from the ContactSearch object. The prototype for this functioniis:

52

C Application Programming Interface (API)

voi d FORTRAN(get _nodef ace_i nteractions) (
i nt* node_bl ock_ids,
i nt* node_i ndexes_i n_bl ock
int* face_bl ock_ids,
int* face_indexes_in_bl ock
int* face_procs,
doubl e* nfi _data);

where

node_block_idsisan array (of length number_of interactions) that containsthe Node Block ID for
the node in each interaction.

node_indexes in_block is an array (of length number_of_interactions) that contains the index in
the Node Block (using Fortran indexing conventions) for the node in each interaction.

face block_idsisan array (of length number_of _interactions) that contains the Face Block ID for
the face in each interaction.

face indexes in_block isan array (of length number_of interactions) that contains the index in the
Face Block (using Fortran indexing conventions) for the face in each interaction.

face procsisan array (of length number_of interactions) that contains the processor that owns the
facein each interaction.

nfi_data is an array (of length number_of _interactions*nfi_data size) that contains the data for
each interaction (See Section 1.3.1). The data for each interaction is contiguous (i.e., the
first nfi_data_size locations contain the data for the first interaction).

3.9 Extracting NodeSurface Interactions

The functions in this section alow the host code to extract the NodeSurface Interactions
from the ContactSearch object. Typically, the host code would determine how much mem-
ory is needed to hold the interactions and then extract the NodeSurface |nteractions using
the functionsin this section.

3.9.1 size nodesurface interactions

The following function allows the host code to determine how many interactions are cur-
rently defined in a ContactSearch object and the data size for each interaction.

voi d FORTRAN(si ze_nodesurface_interactions)(
int* nunber _interactions,
int* nsi_data_size);
where
number_of _interactions are the number of active NodeSurface Interactions that will be returned by

the function Get_NodeSurface | nteractions (see the next section).
nsi_data sizeisthe size of the data returned for each interaction.

53

C Application Programming Interface (API)

3.9.2 get_nodesurface interactions

The following function alows the host code to extract the active
NodeSurface_Interactions from the ContactSearch object. The prototype for this function
is:

voi d FORTRAN(get _nodesurface_interactions)(
int* node_bl ock_ids,
i nt* node_indexes in_block,
int* anal yticsurface_ids,
doubl e* nsi_data);

where

node_block_idsisan array (of length number_of interactions) that containsthe Node Block ID for
the node in each interaction.

node_indexes in_block is an array (of length number_of _interactions) that contains the index in
the Node Block (using Fortran indexing conventions) for the node in each interaction.

analyticsurface ids is an array (of length number_of interactions) that contains the ID of the
Analytic_Surface for each interaction.

nsi_data is an array (of length number_of interactions*nsi_data size) that contains the data for
each interaction (See Section 1.3.2). The data for each interaction is contiguous (i.e., the
first nsi_data_size locations contain the data for the first interaction).

3.10 Exodusll Plotting

ACME has the ability to write an Exodusl| file that contains the full search topology and
all of the interaction data, including enforcement results. This function can be used only if
ACME was built with Exodusl| support (a compile time option). See Section 1.8 for ade-
tailed description of the data written to the Exodusl| file. The host code is required to actu-
ally open and close the Exodusl| file, so it must choose the name and location for the file.
This file must be opened with ICOMPWS=8. The Exodusl| ID is then passed to ACME,
which writes the topology and the results data.

3.10.1 exodus output
The prototype for this capability is
voi d FORTRAN(exodus_out put) (

int* exodus_id,

doubl e* ti e,

int* error);
where

exodus id istheinteger database ID returned by the Exodusl| library from an ex_create call.

timeisthe time value for the “results’ to be written to the Exodusl| file.
error isthe error code.

C Application Programming Interface (API)

3.11 Restart Functions

The search object supports restart through a binary data stream that the host code can ex-
tract for writing to afile, and it provides a separate constructor to initialize the Contact-
Search object to its previous state.

3.11.1 restart_size

The following function allows the host code to determine how large of an array to allocate
for the ContactSearch object to give its restart information. The return value is the number
of double locations that are needed.

void FORTRAN(restart_size)(int* size);

3.11.2 extract_restart_data

The following function allows the host code to extract all the information needed to initial-
ize a ContactSearch object to its current state.

voi d FORTRAN(extract _restart_data)(
doubl e* restart _dat a,
int* error);

where
restart_data is an array of type double. The length of this array is obtained from the function
restart_size().
error isthe error code. This reflects any errors detected during execution of this function.
3.11.3 build_search_restart
The following function “constructs’ a ContactSearch object for restart.
voi d FORTRAN(bui |l d_search_restart)(
doubl e* restart _dat a,
MPI _Comm* conmm
int* error);
where
restart_data is an array of type double. The length of this array is obtained from the function
restart_size().

comm isan MPI_Communicator.
error isthe error code. This reflects any errors detected during execution of this function.

55

C Application Programming Interface (API)

3.12 Registering an Enforcement Object with the Search

To alow for “enforcement data’ to be plotted on the optional Exodusl| plot files (See sec-
tion 3.10), an Enforcement object may be registered with the a ContactSearch object. This
is an entirely optional feature and is only useful if the host code is requesting ACME to
create Exodusl| plot files.

3.12.1 reg_td_enforcement_w_search

The following function may be called to register a ContactTDENnforcement “object” with
the ContactSearch “object”. The ContactTDEnforcement object will add the contact force
to the plotting database.

voi d FORTRAN(reg_ td_enforcenent_w search)();

3.12.2 reg_gap_removal_w_search

The following function may be called to register a ContactGapRemoval “object” with the
ContactSearch “object”. The ContactGapRemoval object will add the displacement cor-
rection to remove the initial gaps to the plotting database.

voi d FORTRAN(reg_gap_renoval _w search)();

3.13 Creating a ContactTDEnforcement “ Object”
3.13.1 build_td_enforcement

The following function “constructs’ a ContactTDEnforcement object for the C API. This
function must be called prior to any other ContactTDENnforcement calls described in the
API.

voi d FORTRAN(bui | d_t d_enforcenent) (
doubl e* enforcenent dat a,
int* error);
where
enforcement_dataisareal array (of length (number of entity keys)* (hnumber of entity keys)) which
gives the kinematic partition factor (similar to Search_Data).
error isthe error code.
3.14 Extracting Contact Forces
3.14.1 compute td_contact_forces
voi d FORTRAN(comput e_td_cont act_forces)(
doubl e* dt ol d,

doubl e* dt,
doubl e* nass,

56

C Application Programming Interface (API)

doubl e* force,
int* error);

where
dt_old isthe previous time step for a central difference integrator.
dt is the current time step for a central difference integrator.
mass is an array that contains the nodal mass for each node.
forceisthe return of array of the computed contact forces.
error isthe error code.

3.15 Creating a ContactGapRemoval “ Object”

3.15.1 build_gap_removal

The following function “constructs” a ContactGapRemoval object for the C API. This
function must be called prior to any other ContactGapRemoval calls described in the API.

voi d FORTRAN(bui I d_gap_renoval) (
doubl e* enforcenent _dat a,
int* error);
where
enforcement_dataisarea array (of length (number of entity keys)* (number of entity keys)) which
gives the kinematic partition factor (similar to Search_Data).
error isthe error code.
3.16 Extracting the Gap Removal Displacements
3.16.1 compute gap_removal
voi d FORTRAN(conmpute_td_contact forces)(
doubl e* displ _cor,
int* error);
where
displ_cor is the displacement correction needed at each node to remove the initial gaps.

error isthe error code.

3.17 Clean Up

The following functions will clean up all internal memory for ACME. These actually de-
lete the ContactSearch, ContactTDEnforcement, and ContactGapRemoval objects. Once
they have been called, any other calls to the API will result in an error. These should be
called prior to terminating a calculation.

57

C Application Programming Interface (API)

3.17.1 cleanup_search

voi d FORTRAN(cl eanup_search) ();

3.17.2 cleanup_td_enforcement

voi d FORTRAN(cl eanup_td_enforcenent) ();
3.17.3 cleanup_gap_removal

voi d FORTRAN(cl eanup_gap_renoval) ();

58

Fortran Application Programming Interface (API)

4. Fortran Application Programming Interface (API)

The Fortran API isactually a collection of C functionsthat can be called from Fortran rou-
tines. (A FORTRAN macro is applied to these functions to append an underscore to the
name, if appropriate.) These functions can then operate on the ContactSearch object, only
one of which iscurrently allowed. Functions are provided to alow destruction of one Con-
tactSearch Object and creation of a new object at any point. Multiple objects can be sup-
ported in the future if the need ever arises.

For Fortran, there exists no capability to pass data by value, so simply specifying the name
of the variable or array will alow it to be passed appropriately.

4.1 Version and Date

ACME provides functions to extract its current version number and release date. In addi-
tion, afunction is provided to check the compile-time compatibility of the ACME library
and the host code with respect to the MPI library.

411 version
The following function returns the version of ACME, which is a character string of the
form x.yz, where x is an integer representing the major version, y is an integer represent-
ing the minor version, and z is a letter representing the bug fix level. This version of
ACME is0.3a. The function prototypeis:

version(vers)

where

versisan array of characters of length 80.

412 versiondate

The following function returns the release date for ACME, which is a character string of
the form *January 5, 2000 (the current release date). The prototype for thisfunction is:

versi ondate(vers_date)
where

vers dateisan array of characters of length 80.

4.1.3 contact_mpi_compatibility

Thefollowing function returns an error if the compilations of the host code and the ACME
library are incompatible with respect to the MPI library. The prototype for thisfunction is:

59

Fortran Application Programming Interface (API)

contact _npi _conpatibility(host_compile, error)
where

host_compileisthe value of MPI_COMPILE used during compilation of the host code.
error isthe error code.

The host code should call this function with the host_compile argument set to
MPI_COMPILE, which is defined in the ContactSearch header file to be O if
CONTACT_NO_MPI is defined at compile time, and defined as 1 otherwise. This func-
tion will check for compatibility with the value of MPI_COMPILE defined during compi-
lation of the ACME library.

4.2 Errors

As discussed in Section 1.7, there are C-style character strings that can be extracted that
give a detailed description of what error(s) occurred. These strings are specific to the cur-
rent processor. Therefore, each processor may have a different number of error messages.

4.2.1 number_of search errors

The following function determines how many error messages the current processor has:

nunber _of search_errors(numerrors)

4.2.2 Qet_search_error_message

The following function can be used to extract the character strings for each error message
on this processor (the number of which can be determined by the function in the previous
section):

get _search_error_nessage(i, message)
where

i isthe Fortran index of the error message (i.e., 1 to num_errors)
message is an array of characters of length 81.

4.3 Creating a ContactSearch “Object”
4.3.1 build_search

This subroutine “constructs’ a ContactSearch object for the Fortran API. This subroutine
must be called prior to any other calls described in the API.

bui | d_search(

di mensionality,
nurber of st at es,

60

where

Fortran Application Programming Interface (API)

nunber _of entity_keys,
nunber _of node_bl ocks,
node_bl ock_t ypes,

nurber _of nodes_i n_bl ocks,
node_gl obal _ids,
nunber _of face_ bl ocks,
face_bl ock_types,

nurber _of faces_i n_bl ocks,
connectivity,

nunber _of _nodal _conm part ners,
nodal _comm proc_i ds,
nunber _of _nodes_t o_partner
comruni cat i on_nodes,

npi _conmmuni cat or,

error)

dimensionality is the number of spatial coordinates in the topology. Note: We are only supporting
three dimensionsin this release. Two-dimensional support will be added in the future.

number_of_states is the number of states the host code requests to be stored. A value of 1 implies
that the ContactSearch object can not back up to an older state. A value of 2 will imply the
ContactSearch object can back up to one old state, etc. For this release, this value must be
1

number_of_entity_keys is the number of entity keys that will be used. Thisis currently the sum of
the number of Face Blocks and the number of Analytic_Surfaces.

number_of_node_blocks is the number of Node Blocks in the topology. Currently, since we only
support one type of node (namely NODE), we only support one Node Block.

node_block_typesis an array (of length number_of node blocks) describing the type of nodes in
each block. Currently, the only accepted type value for aNode Block is 1 (NODE).

number_of _nodes_in_blocksisan array (of length number_of node_blocks) that gives the number
of nodes in each Node_Block.

node_global_idsisan array containing the host code ID for each node.

number_of face blocksisthe number of Face Blocksin the topology.

face block_types is an array (of length number_of face blocks) describing the type of faces in
each Face Block. Accepted values are QUADFACEL4=1, QUADFACEQ8=2,
TRIFACEL3=3, and TRIFACEQ6=4.

number_of faces in blocksis an array (of length number_of face blocks) that gives the number
of facesin each Face Block.

connectivity is a one-dimensional array that gives the connectivity (using Fortran indexing in the
one and only Node Block) for each face. This may change when multiple Node Blocks
are supported.

number_of_nodal_comm_partners is the number of processors that share nodes with the topology
supplied to ACME on the current processor.

nodal_comm_proc_idsis an array (of length number_of _nodal_comm_partners) that lists the pro-
cessor | Ds that share nodes with the topology supplied to ACME on the current processor.

number_of _nodes to partner is an array (of length number_of nodal_comm_partners) that gives
the number of nodes shared with each processor in hodal_comm_proc _ids.

communication_nodes is an array that lists the nodes in the topology supplied to ACME that are
shared, grouped by processor in the order specified in nodal_comm_proc _ids.

mpi_communicator isan MPI_Communicator.

error isthe error code. This reflects any errors detected during execution of this method.

61

Fortran Application Programming Interface (API)

If the ACME library isbuilt in pure serial mode (i.e., CONTACT_NO_MPI is defined dur-
ing compilation), then number_of _nodal_comm_partners should be set to 0 and dummy
pointers can be supplied for noda _comm_proc ids, number_of nodes to partner, and
communication_nodes. Furthermore, any integer value can be used for
mpi_communicator, which isignored.

4.4 Search_Data

As described in Section 1.1.4, Search_Data is a three-dimensional Fortran-ordered array
for specifying entity pair data. The first index in the array refers to the data parameter, and
the next two indexes refer to the keys for the two entities for which that parameter is appli-
cable.

4.4.1 check search_data size

The following interface alows for checking the size of Search_Data expected by ACME.
This is intended to be a check by the host code to ensure that ACME and the host code
have a consistent view of the Search_Data array.

check _search_data_si ze(
size_data_per _pair,
nunber _of entity_ keys,
error)

where

Size data per_pair isthe number of data parametersfor each entity pair (currently 3).
number_of entity keysisthe number of entity keys.
error isthe error code.

442 set_search _data

The following interface allows the host code to specify the Search_Data array (see Section
1.1.4), which must be set prior to calling any of the search algorithms. This function can
be called at any time to change values in the Search_Data array (e.g., to change toleranc-
€s).

set _search_data(search _data)

45 Analytic_Surfaces

ACME supports the determination of interactions of nodes with Analytic_Surfaces. Cur-
rently, the only supported Analytic_Surfaces are a plane, a sphere, and two types of cylin-
ders (one for a container and one for a post). The types of Analytic_Surfaces supported
will be expanded in the future. The ACME ID for an Analytic_Surface is the number of
face blocks plus the order in which the surface was created.

62

Fortran Application Programming Interface (API)

45.1 add_analytic_surface
The interface to add an Analytic_Surfaceis:

add_anal yti c_surface(
anal ytic_surface_type,
as_dat a,
error)

where

analytic_surface type = 1, 2, 3, or 4 for a PLANE, SPHERE, CYLINDER_INSIDE, or
CYLINDER_OUTSIDE, respectively.

as_datais dependent on the type of Analytic_Surface and is described in Table 7.

error isthe error code.

45.2 set_analytic_surface configuration

The following interface updates the configuration(s) for an Analytic_Surface. This method
has not yet been implemented in ACME, and returns an error if called.

set _anal ytic_surface_configuration(
id,
as_dat a,
error)

where
as_idisthe ACME ID for the Analytic_Surface.
as dataisdescribedin Table7..
error isthe error code.
Table 7. Fortran Data Description for Analytic_Surfaces
Cylinder_ Cylinder_
Plane Sphere Inside Outside
as data(1) X-Coordinate X-Coordinate X-Coordinate X-Coordinate
of Point of Center of Center of Center
as data(2) Y-Coordinateof | Y-Coordinateof | Y-Coordinateof | Y-Coordinateof
Point Center Center Center
as data(3) Z-Coordinateof | Z-Coordinateof | Z-Coordinateof | Z-Coordinateof
Point Center Center Center
as data(4) X-Component | Radius X-Component | X-Component
of Normal Vec- of Axial Vector | of Axial Vector
tor

63

Fortran Application Programming Interface (API)

Table 7. Fortran Data Description for Analytic_Surfaces

Cylinder_ Cylinder_
Plane Sphere Inside Outside
as_data(5) Y-Component Y-Component Y-Component
of Normal Vec- of Axial Vector | of Axial Vector
tor
as_data(6) Z-Component Z-Component Z-Component
of Normal Vec- of Axial Vector | of Axial Vector
tor
as data(7) Radius Radius
as_data(8) Length Length

4.6 Node Block Data

Currently the only valid type of Node Block is NODE, which has no attributes. Future
versions will include NODE_WITH_SLOPE and NODE_WITH_RADIUS.

4.6.1 set_node block_configuration

The following interface allows the host code to specify the configuration(s) for the nodes
by Node Block. Thisfunction can be called at any time but must be called prior to thefirst
search. For a one-configuration search, only the current configuration needs to be speci-
fied. For two-configuration searches, both current and predicted configurations must be
specified. This function should be called every time the nodal positions in the host code
are updated. The prototype for thisfunction is:

set _node_bl ock_confi gurati on(
config_type,
node_ bl ock i d,
posi tions,
error)

where

config_typeisthe configuration (CURRENT_CONFIG = 1, PREDICTED_CONFIG = 2).
node_block_id isthe ACME ID for the Node Block.

positionsis an array that holds the nodal positions for every nodein the Node Block.

error isthe error code.

Fortran Application Programming Interface (API)

4.6.2 set_node block_attributes

The following function will be used to add the slope for NODE_WITH_SL OPE or the ra-
diusfor NODE_WITH_RADIUS when these types are supported. Currently, this function
returns an error if it iscalled.

set _node_bl ock_attri but es(
config_type,
node_ bl ock i d,
attributes,
error)

where

config_type isthe configuration (CURRENT_CONFIG = 1, PREDICTED_CONFIG = 2).
node_block_id isthe ACME ID for this Node Block.

attributes is an array of the attributes for this Node _Block.

error isthe error code.

4.7 Search Algorithms
4.7.1 set_search_option

By default, both multiple interactions and normal smoothing options are inactive. The fol-
lowing function should be called to activate, deactivate, and control multiple interactions
and normal smoothing.

set _search_option(
option,
st at us,
dat a,
error);

where

option may be either 0 (MULTIPLE_INTERACTIONS) or 1 (NORMAL_SMOOTHING}.

status may be O (INACTIVE) or 1 (ACTIVE).

datais an array whose first member contains the angle above which the edge between facesis con-
sidered to be sharp instead of non-sharp (rounded), and whose second and third members
(valid only for the NORMAL_SMOOTHING option) contain the distance in isoparamet-
ric coordinates over which normal smoothing is calculated and the smoothing resol ution,
respectively.

error isthe error code.

4.7.2 static_search_1 configuration

This search algorithm can be called only after a current configuration has been specified.

static_search_1_configuration(error)

65

Fortran Application Programming Interface (API)

4.7.3 static_search_2 configuration

This search algorithm can be called only if both current and predicted configurations have
been specified.

static_search_2 configuration(error)

4.7.4 dynamic_search_2 configuration

The dynamic search can be called only if both the current and predicted configurations
have been specified.

dynam c_search_2 configuration(error)

4.8 Extracting NodeFace |nteractions

The functions in this section allow the host code to extract the NodeFace Interactions
from the ContactSearch object. Typically, the host code would determine how much mem-
ory is needed to hold the interactions using the function in Section 4.8.1 and then extract
the NodeFace_Interactions using the function in Section 4.8.2.

4.8.1 size nodeface interactions

The following function alows the host code to determine how many
NodeFace Interactions are currently defined in a ContactSearch object and the data size
for each interaction.

si ze_nodeface_i nteractions(
nunber _of i nteracti ons,
nfi _data_size)

where

number_of_interactions is the number of active NodeFace Interactions that will be returned by the
function Get_NodeFace |nteractions (see the next section).
nfi_data_sizeisthe size of the datareturned for each interaction.

4.8.2 get_nodeface_interactions

The following function allows the host code to extract the active NodeFace_|nteractions
from the ContactSearch object. The prototype for this function is:

get _nodeface_i nteracti ons(
node_bl ock_i ds,
node_i ndexes_i n_bl ock,
face_bl ock i ds,
face_i ndexes_in_bl ock,
face_procs,
nfi _data)

66

Fortran Application Programming Interface (API)

where

node_block_idsisan array (of length number_of interactions) that containsthe Node Block ID for
the node in each interaction.

node_indexes in_block is an array (of length number_of_interactions) that contains the index in
the Node Block (using Fortran indexing conventions) for the node in each interaction.

face block_idsisan array (of length number_of _interactions) that contains the Face Block ID for
the face in each interaction.

face indexes in_block isan array (of length number_of interactions) that contains the index in the
Face Block (using Fortran indexing conventions) for the face in each interaction.

face procsisan array (of length number_of interactions) that contains the processor that owns the
facein each interaction.

nfi_data is an array (of length number_of interactions*nfi_data size) that contains the data for
each interaction (See Section 1.3.1). The data for each interaction is contiguous (i.e., the
first nfi_data_size locations contain the data for the first interaction).

4.9 Extracting NodeSurface Interactions

The functions in this section alow the host code to extract the NodeSurface Interactions
from the ContactSearch object. Typically, the host code would determine how much mem-
ory is needed to hold the interactions and then extract the NodeSurface |nteractions using
the functionsin this section.

4.9.1 size nodesurface interactions

The following function allows the host code to determine how many interactions are cur-
rently defined in a ContactSearch object and the data size for each interaction.

si ze_nodesurface_interactions(
nurber _i nteracti ons,
nsi _data_size)

where

number_of _interactions are the number of active NodeSurface Interactions that will be returned by
the function Get_NodeSurface | nteractions (see the next section).
nsi_data sizeisthe size of the data returned for each interaction.

4.9.2 get_nodesurface interactions

The following function alows the host code to extract the active
NodeSurface Interactions from the ContactSearch object. The prototype for this function
is:

get _nodesurface_interactions(
node_bl ock_i ds,
node_i ndexes_i n_bl ock,
anal yti csurface_ids,
nsi _data)

67

Fortran Application Programming Interface (API)

where

node_block_idsisan array (of length number_of interactions) that containsthe Node Block ID for
the node in each interaction.

node_indexes in_block is an array (of length number_of_interactions) that contains the index in
the Node_Block (using Fortran indexing conventions) for the node in each interaction.

analyticsurface ids is an array (of length number_of interactions) that contains the ID of the
Analytic_Surface for each interaction.

nsi_data is an array (of length number_of_interactions*nsi_data size) that contains the data for
each interaction (See Section 1.3.2). The data for each interaction is contiguous (i.e., the
first ns_data_sizelocations contain the data for the first interaction).

4.10 Exodusll Plotting

ACME has the ability to write an Exodusl| file that contains the full search topology and
all of theinteraction data, including enforcement results. This function can be used only if
ACME was built with Exodusl | support (a compile time option). See Section 1.8 for ade-
tailed description of the data written to the Exodusl| file. The host code is required to actu-
ally open and close the Exodusl| file, so it must choose the name and location for the file.
This file must be opened with ICOMPWS=8. The Exodusl! ID is then passed to ACME,
which writes the topology and the results data.

4.10.1 exodus output
The prototype for this capability is
exodus_out put (
exodus_i d,
time,
error)
where
exodus _id isthe integer database ID returned by the Exodusl| library from an ex_create call.
timeisthe time value for the “results’ to be written to the Exodusl file.
error isthe error code.

4.11 Restart Functions

The search object supports restart through a binary data stream that the host code can ex-
tract for writing to afile, and it provides a separate constructor to initialize the Contact-
Search object to its previous state.

68

Fortran Application Programming Interface (API)

4.11.1 restart_size

The following function allows the host code to determine how large of an array to allocate
for the ContactSearch object to give its restart information. The return value is the number
of double locations that are needed.

restart_size(size)

4.11.2 extract_restart_data

The following function allows the host code to extract all the information needed to initial-
ize a ContactSearch object to its current state.

extract _restart _dat a(
restart_data,
error)

where
restart_datais adouble precision array whose length is obtained from the subroutine restart_size().

error is an integer error code that reflects any errors that are detected.

4.11.3 build_search_restart

This subroutine “constructs’ a ContactSearch object for restart.

buil d_search_restart(
restart_data,

conm
error)

where

restart_data is a double precision array whose length of this array is obtained from the subroutine
restart_size().

comm is an integer, currently unused.

error is an integer error code that reflects any errors that are detected.

4.12 Registering an Enforcement Object with the Search

To alow for “enforcement data’ to be plotted on the optional Exodusl| plot files (See sec-
tion 4.10), an Enforcement object may be registered with the a ContactSearch object. This
is an entirely optional feature and is only useful if the host code is requesting ACME to
create Exodusl| plot files.

69

Fortran Application Programming Interface (API)

4.12.1 reg_td_enforcement_w_search

This function may be called to register a ContactTDENnforcement “object” with the Con-
tactSearch “object”. The ContactTDEnforcement object will add the contact force to the
plotting database.

reg_td_enforcement _w search()

4.12.2 reg_gap_removal_w_search

The following function may be called to register a ContactGapRemoval “object” with the
ContactSearch “object”. The ContactGapRemoval object will add the displacement cor-
rection to remove the initial gapsto the plotting database.

reg_gap_renoval _w search()

4.13 Creating a ContactT DEnforcement “ Object”
4.13.1 build_td_enforcement

The following subroutine “constructs’ a ContactTDEnforcement object for the Fortran
API. This subroutine must be called prior to any other ContactTDEnforcement calls de-
scribed inthe API.

build_td _enforcenent(
enf orcenent _dat a,
error)

where
enforcement_dataisarea array (of length (number of entity keys)* (number of entity keys)) which

gives the kinematic partition factor (similar to Search_Data).
error isthe error code.

4.14 Extracting Contact Forces
4.14.1 compute td_contact_forces
conpute_td contact forces(
dt_old,
dt,
nass,
force,
error);

where

dt_old isthe previous time step for a central difference integrator.
dt isthe current time step for a central difference integrator.

70

Fortran Application Programming Interface (API)

mass is an array that contains the nodal mass for each node.
forceisthe return of array of the computed contact forces.
error isthe error code.

4.15 Creating a ContactGapRemoval “ Object”

4.15.1 build_gap_removal

This subroutine “constructs’ a ContactGapRemoval object for the Fortran API. This sub-
routine must be called prior to any other ContactGapRemoval calls described in the API.

bui | d_gap_renoval (
enf orcenent dat a,
error)
where
enforcement_dataisareal array (of length (number of entity keys)* (number of entity keys)) which
gives the kinematic partition factor (similar to Search_Data).
error isthe error code.
4.16 Extracting the Gap Removal Displacements
4.16.1 compute _gap_removal
conpute_td_contact _forces(
di spl _cor,
error)
where
displ_cor isthe displacement correction needed at each node to remove the initial gaps.
error isthe error code.

4.17 Clean Up

The following functions will clean up all internal memory for ACME. These actually de-
lete the ContactSearch, ContactTDEnforcement, and ContactGapRemoval objects. Once
they have been called, any other calls to the API will result in an error. These should be
called prior to terminating a calculation.

4.17.1 cleanup_search

cl eanup_search()

4.17.2 cleanup_td_enforcement

cl eanup_td_enforcenent ()

71

Fortran Application Programming Interface (API)

4.17.3 cleanup_gap_removal

cl eanup_gap_renoval ()

72

Example

5. Example

This section outlines a simple single-processor example with multiple face types and an
Analytic_Surface using the C++ interface. The only differences in using the C or Fortran
interface would be calling the analogous C/Fortran functions (the data and calling se-
guence would be the same).

5.1 Problem Description

Consider the problem shown in Figure 11., where two bodies impact each other as well as
an analytic plane. One body is discretized with 8-node hexahedral elements and the other
isdiscretized with 4-node tetrahedral elements (the discretizations are not shown in Figure
11., however). For this example, we consider a dynamic search for
NodeFace Interactions. As previously noted, all interactions with Analytic_Surfaces are
static checks, regardless of the type of search, for this version of ACME. The host codeis
responsible for creating a topological representation of the surface to supply to ACME.
The Face Block numbering is shown in Figure 12., the surface topology is shown in Fig-
ure 13., and the connectivities for the faces are given in Table 8..

Current Configuration Predicted Configuration

Figure 11. Example impact problem (two rectangular bodies and an Analytic_Surface)

Figure 12. Face Block Numbering for Example Problem

73

Example

Ny
e
e

Host Code Numbering ACME Numbering
(Face Block ID, Index in Block)

Figure 13. Surface Topology for Example Problem

As required by the current implementation, only one Node Block is used (this block will
then have an ID of 1). For this example, consider the case where the user wants to specify
one set of search tolerance values between the two bodies and another set between each
body and the analytic plane, as well as specifying the interaction type between each. To
accommodate this, the number of Face Blocks will be four (one for the “side” face of the
left body, one for the “bottom” face of the left body, one for the “side” face of the right
body and one for the “bottom” face of the right body). The total number of Entity Keys
will then be 5 (one each for the Face Blocks and an additional one for the PLANE
Analytic_Surface).

Table 8. Face Blocksfor Example Problem

Host Code | Face Block Index in Connectivity
Face ID ID Block
5 1 1 1-5-2
7 1 2 2-5-3
8 1 3 3-54
10 1 4 5-1-4

74

Example

Table 8. Face Blocksfor Example Problem

Host Code | Face Block Index in Connectivity
Face ID ID Block
13 2 1 4-6-3
14 2 2 4-8-6
17 2 3 8-7-6
15 2 4 6-7-3
23 3 1 9-11-14-13
24 4 1 9-10-12-11

5.2 Constructing a ContactSearch Object

The code fragment below represents the call (and error checking) to construct the Contact-
Search object:

Cont act Sear ch: : Cont act Err or Code error

Cont act Sear ch search_obj (
di mensionality, nunber_of states, nunber_of entity_ keys,
nunber _of node_ bl ocks, node_ bl ock_types,
nunber _of nodes_i n_bl ocks, node_gl obal i ds,
nunber _of face bl ocks, face bl ock _types,
nunber of faces_in_block, connectivity,
nunber _of nodal conm partners, nodal conm proc_ids,
nunber _of nodes_to_partner, comruni cation_nodes,
npi _comuni cator, error);

if(error){ // an error occurred on sone processor
int numerr = search_obj.Nunber_of Errors();
for(int i=0; i<numerr ; i++)

cout << search_obj.Error_Message(i) << endl

exit(error);

}
The data below represent the values of the arguments in the constructor:

di mensionality = 3

nunber of states =1

nunber _of entity_keys 5

nunber _of node_bl ocks 1

node_bl ock_types = { NODE }

nunber _of _nodes_in_blocks = { 14 }

node_gl obal _ids = { 11, 8,13,1,4,17,21, 41,17, 33,19, 27, 38,16 }

nunber _of face_blocks = 4

face_bl ock_types = { TRI FACEL3, TRI FACEL3, QUADFACEL4, QUADFACEL4 }

nunber _of _faces_in_block ={ 4, 4, 1, 1}

connectivity = { [1, 5 2, 2, 5, 3, 3, 5 4, 5 1, 4], [4, 6, 3, 4,
8,6, 8 7, 6, 6, 7, 3], [9, 11, 14, 13] , [9, 11, 12, 10] }

75

Example

nunber _of nodal _conm partners = 0
nodal _comm proc_ids = NULL
nunber _of nodes_t o_partner = NULL
comuni cati on_nodes = NULL

npi _comuni cator = 0

5.3 Adding an Analytic_Surface

The next step is to add the analytic plane. Since we have already added four Face Blocks,
the ID of the PLANE Analytic_Surface will be 5. The code fragment (and error checking)
to add this Analytic_Surfaceis.

error = search_obj.Add_Anal ytic_Surface(
anal yti c_surfacetype,
data);
if(error){
int numerr = search_obj.Nunber_of _Errors();
for(int i=0; i<numerr ; i++)
cout << search_obj.Error_Message(i) << endl;
exit(error);

}

The data needed to add the Analytic_Surface are (See Table 5. for a description of the da-
ta):

anal yti csurface_type = PLANE
data = { [0.0, 0.0, 0.0], [0.0, 1.0, 0.0] }

5.4 Search Data

The next step isto set the Search_Data. For this example, assume the user only wants in-
teractions for nodes of Face Block 2 against faces of Face Block 3, nodes of Face Block
3 against faces of Face Block 2 and nodes of Face Blocks 1 and 4 against the PLANE
Analytic_Surface. We will use a Search_Normal_Tolerance of 0.01 for interactions be-
tween the two bodies and a Search_Normal_Tolerance of 0.1 for the bodies against the
PLANE Analytic_Surface. We will use Search_Tangential_Tolerance values of half the re-
spective Search_Normal_Tolerance values. Currently, a node only has one entity key (this
isalimitation of the current implementation and will be addressed in afuture release). The
entity key assigned to the node is from the first face it is connected to. As aresult of this
limitation, we must also allow interactions to be defined between nodes from face block 1
to interact with faces from face block 3 and nodes from face block 4 to interact with faces
from face block 2. The call to add these dataiis:

search_obj . Set _Search_Data(Search _Data);

The search data array, with 2 x 5 x 5 values, is:

Search_Data = {
0, 0.01, 0.005 // FBl1 nodes agai nst FBl faces

76

0, 0.01, 0.005
0, 0.01, 0.005
0, 0.01, 0.005
0, 0.01, 0.005
0, 0.01, 0.005
0, 0.01, 0.005
1, 0.01, 0.005
1, 0.01, 0.005
0, 0.01, 0.005
1, 0.01, 0.005
1, 0.01, 0.005
0, 0.01, 0.005
0, 0.01, 0.005
0, 0.01, 0.005
0, 0.01, 0.005
1, 0.01, 0.005
0, 0.01, 0.005
0, 0.01, 0.005
0, 0.01, 0.005
1, 0.

0, 0.

0, 0.

1, 0.

0, 0.

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

FB2 nodes agai nst FB1 faces
FB3 nodes agai nst FB1 faces
FB4 nodes agai nst FB1 faces
Anal ytic Pl ane agai nst FBl faces
FB1 nodes agai nst FB2 faces
FB2 nodes agai nst FB2 faces
FB3 nodes agai nst FB2 faces
FB4 nodes agai nst FB2 faces
Anal ytic Pl ane agai nst FB2 faces
FB1 nodes agai nst FB3 faces
FB2 nodes agai nst FB3 faces
FB3 nodes agai nst FB3 faces
FB4 nodes agai nst FB3 faces
Anal ytic Pl ane agai nst FB4 faces
FB1 nodes agai nst FB4 faces
FB2 nodes agai nst FB4 faces
FB3 nodes agai nst FB4 faces
FB4 nodes agai nst FB4 faces
Anal ytic Plane agai nst FB4 faces

1, 0.05 // FBl nodes against Analytic Plane
1, 0.05 // FB2 nodes against Analytic Plane
1, 0.05 // FB3 nodes against Analytic Plane
1, 0.05 // FB4 nodes against Analytic Plane
1, 0.05 } // Analytic Plane against Analytic Plane

5.5 Setting the Search Options

(don’ t

(don’ t

(don’ t

(don’ t

Example

exi st)

exi st)

exi st)

exi st)

For this example, multiple interaction definition is necessary but normal smoothing is not
needed. A value of 30 degrees will be used for the SHARP-NON_SHARP_ANGLE. The
code fragment to activate multiple interactionsis

/1 Activate multiple interaction

error = Set_Search_Opti on(
Cont act Sear ch: : MULTI PLE_| NTERACTI ONS
Cont act Sear ch: : ACTI VE,
mul tiple_interaction_data);

if(error){
int numerr

for(int i=0 ;

search_obj . Nunber _of Errors();
i <num.err ; i++)

cout << search_obj.Error_Message(i) << endl

exit(error);

}

where multiple interaction_data is a pointer to the SHARP-NON_SHARP _ANGLE
which has been set to 30 degrees. The code fragment to deactivate normal smoothing is

/] Deactivate nornm

snoot hi ng

error = Set_Search_Opti on(
Cont act Sear ch: : NORMAL _SMOOTHI NG,
I NACTI VE,

Cont act Sear ch: :

dummy);

77

Example

if(error){
int numerr = search_obj. Nunber_of Errors();
for(int i=0; i<numerr ; i++)
cout << search_obj.Error_Message(i) << endl
exit(error);

}
Since normal smoothing is being deactivated, dummy is a pointer to double but will never

be dereferenced so itsvalue isirrelevant.
5.6 Specifying Configurations

At this point the topology is completely specified. The search object can be used to com-
pute the interactions once the configurations are specified. Since we are going to perform a
dynamic search, we need to specify the current and predicted configurations for the
Node Blocks (in this case only one block). The code fragment to set the configurationsis:

/1 Supply the current position
for(int iblk=1; iblk=nunber_of node_bl ocks ; iblk++){
error = search_obj. Set _NodeBl ock_Confi gurati on(
Cont act Sear ch: : CURRENT _CONFI G

i bl k,
current _positions[iblk-1]);
if(error){
int numerr = search_obj. Nunber_of Errors();
for(int i=0; i<numerr ; i++)

cout << search_obj.Error_Message(i) << endl
exit(error);
}
/1 Supply the predicted position
error = search_obj. Set _NodeBl k_Confi gurati on(
Cont act Sear ch: : PREDI CTED _CONFI G,
i bl k,
predi cted_positions[iblk-1]);
if(error){
int numerr = search_obj.Nunber_of _Errors();
for(int i=0; i<numerr ; i++)
cout << search_obj.Error_Message(i) << endl
exit(error);
}
}

The current and predicted positions for the nodes are shown in Table 9..

Table 9. Current and Predicted Positions for Example Problem

Node Current Position Predicted Position
1 {-1.10.1 0.0} {-0.9-0.1 0.0}
2 {-11 01 1.0} {-0.9-0.1 1.0}

78

Table 9. Current and Predicted Positions for Example Problem

Example

Node Current Position Predicted Position
3 {-0.1 0.1 1.0} {0.1-01 1.0}
4 {-0.1 0.1 0.0} {0.1-0.1 0.0}
5 {-0.6 0.1 0.5} {-04-0.1 0.5
6 {-0.1 0.6 0.6} {0.1 0.4 0.6}
7 {-01 1.1 1.0} {0.1 09 1.0}
8 {-0.1 1.1 0.0} { 0.1 09 0.0}
9 {0.1 0.1 0.0} {-0.1-0.1 0.0}
10 {1.1 0.1 0.0} {0.9-0.1 0.0}
11 {0.1 0.1 1.0} {-01-0.1 1.0}
12 {1.1 01 1.0} {0.9-0.1 1.0}
13 {0.1 1.1 0.0} {-0.1 0.9 0.0}
14 {0.1 11 1.0} {-01 09 1.0}

5.7 Performingthe Search

The search can now be performed with the following code fragment:

error = search_obj.Dynam c_Search_2 Configuration();
if(error){
cout << “Error in Dynani c_Search:

for(i=0 ;

exit(error);

}

<< error << endl
int numerr = search_obj. Nunber_of Errors();

i <num.err ;

i ++)

Error Code = *

cout << search_obj.Error_Message(i) << endl

5.8 Extracting Interactions

The following coding will

NodeSurface_|Interactions:

/1l Get the NodeFace | nteractions
i nt nunber _of NFIs,
search_obj . Si ze_NodeFace_I nteracti ons(

nurber _of NFI s,
NFl _dat a_si ze);
i f(number _of NFIs){
int* NFlI _node_ bl ock_ids

NFl _data_si ze;

new i nt [nunber _of NFI s];

extract both the NodeFace Interactions and the

79

Example

}
/1

i nt* NFI _node_i ndexes_in_block = new int[nunmber_of NFIs];
int* NFl _face_block_ids = new int[nunber_of NFIs];
int* NFl _face_indexes_in_block = new int[nunber_of NFIs;]
int* NFl _face_procs = new int[nunber_of NFIs];
doubl e* NFI _data = new doubl e[nunber _of _NFI s*NFI _dat a_si ze];
sear ch. Get _NodeFace_I nteracti ons(NFl _node_bl ock_i ds,

NFI _node_i ndexes_i n_bl ock, NFI _face_ bl ock_i ds,

NFl _face_i ndexes_i n_bl ock, NFI _face_procs, NFl _dat a) ;

Cet the NodeSurface_Interactions

i nt nunmber _of NSIs, NSI_data_size;
search_obj . Si ze_NodeSurface_I nteractions(

number _of NSI s,
NSl _data_si ze);

i f(number_of _NSIs){

}
Table 10.

int* NSI_node_bl ock_ids = new int[nunber_of NSIs];
int* NSI_node_i ndexes_in_block = new int[nunmber_of NSIs];
int* NSI_anal yticsurface_ids = new int[nunber_of NSIs];
doubl e* NSI _data = new doubl e[nunber _of _NSI s*NSI _dat a_si ze];
sear ch. Get _NodeSurface_I nteracti ons(NSI_node_bl ock_i ds,

NSI _node_i ndexes, NSI anal yticsurface_ids, NSI _data);

givesthe data for the NodeFace _Interactions and Table 11. gives the datafor the

NodeSurface Interactions.

Table 10. NodeFace Interactions for Example Problem

Node In.dex Face In.dex Local Unit Unit
Block in Block in Coords Gap Pushback | Surface | Alg.
Block Block Vector Normal

1 3 3 1 1,-1 -0.2 -1,0,0 -1,0,0 |3
1 4 3 1 -1,-1 -0.2 -1,0,0 -1,0,0 3
1 6 3 1 0,0 -0.2 -1,0,0 -1,0,0 |3
1 7 3 1 1,1 -0.2 -1,0,0 -1,0,0 |3
1 8 3 1 -1,1 -0.2 -1,0,0 -1,0,0 3
1 9 2 1 0,0 -0.2 1,0,0 1,0,0 3
1 11 2 1 0,0 -0.2 1,0,0 1,0,0 3
1 13 2 2 0,1 -0.2 1,0,0 1,0,0 3
1 14 2 3 0,1 -0.2 1,0,0 1,0,0 3

80

Table 11. NodeSurface Interactionsfor Example Problem

Example

e | et | sutanin | g | mon | Stc
1 1 5 -0.1 -0.9,0,0 0,10
1 2 5 -0.1 -09,0,1 0,10
1 5 5 -0.1 -04,0,05 |0,1,0
1 11 5 -0.1 -0.1,0,1 0,10
1 9 5 -0.1 -0.1,0,0 0,10
1 4 5 -0.1 0.1,0,0 0,10
1 3 5 -0.1 01,01 0,10
1 10 5 -0.1 090,0 0,10
1 12 5 -0.1 090,1 0,10

This completes the example for one time step. It is assumed the host code would take these
interactions, enforce the constraints implied by these interactions and then integrate the
governing equations to the next time step. At that point, the host code can supply the cur-
rent and predicted configurations for the new time step and call the search again to define
new interactions. This process can then be repeated until the analysis is compl ete.

5.9 Exodusl| Output

An Exodusl| output file can be created which contains the topology and interactions with
the following code fragment

int iows = 8§;
int compws = 8;
char QutputFil eNane[] = "contact_topol ogy. exo";
i nt exodus_i d=ex_creat e(Qut put Fi | eNane, EX CLOBBER, &onmpws, & ows) ;
i f(search->Exodus_Qutput(exodus_id)){

cout << "Error with exodus output" << endl;

for(1=0 ; i<search->Nunber_of Errors() ; i++)

cout << search->Error_Message(i) << endl;

}

ex_cl ose(exodus_id);

Figure 14. shows plots from the Exodusl| output for this example. The analytic plane is
not shown in these plots because there is no way to include this plane in the Exodusl| file.

81

Example

=

(@ (b) (©

Figure 14. Exodusll Output for Example Problem

a) The topology with avector plot of displacement.

b) NodeFace_|nteraction vector plot. Note the interaction vectors push back exactly to the
opposing face.

¢) NodeSurface Interaction vector plot. The “top” of the vectors represent the location of
the Analytic_Surface.

82

Appendix A: Glossary of ACME Terms

ACME - Algorithms for Contact in a Multiphysics Environment, the current name for the
search library.

Analytic_Surface - A rigid surface that can be described analytically by a geometric defi-
nition (e.g., planes and spheres).

ContactErrorCode - An error code returned by all public access functionsin ACME.

ContactSearch - The top level object constructed by a host application to search for topo-
logical interactions.

ContactFace Type - The type of faces in a Face Block, currently QUADFACELA4,
QUADFACEQS, TRIFACELS3, or TRIFACEQS6.

ContactNode Type - The type of nodes in a Node Block, currently only NODE.
(NODE_WITH_SLOPE and NODE_WITH_RADIUS will be available in a subsequent
release.)

ContactTDENforcement - The top level object constructed by a host application to deter-
mine forces from topological interactions found by the ContactSearch object for use in
transient dynamics equations.

Dynamic_Search_2_Configuration - The search algorithm that uses a combination of a
dynamic intersection and closest point projection to determine interactions.

Entity Key - An identifier for a topological entity (currently node, face, or
Analytic_Surface) used to extract user-specified parameters from the Search_Data array.

Face Block - A collection of faces of the same type that have the same Entity_Key.

Gap - The distance between a node and aface, in the direction normal to that face in most
cases, defined as positive if the node is not penetrating the face and zero or negative if the
node is on or inside (penetrating) the face.

NODE - A traditional node with position and no other attributes.

Node Block - A collection of nodes of the same type. Currently, all nodes must be placed
in asingle Node_Block of type NODE.

NodeFace Interaction - A set of datareturned by ACME to the host code that contains the
interacting node, the face with which it interacts, and data describing the interaction (con-
tact point in local coordinates, Normal_Gap, unit pushback vector, unit surface normal,
and algorithm used).

83

NodeSurface Interaction - A set of datareturned by ACME to the host code that contains
the interacting node, the Analytic_Surface with which it interacts, and additional data de-
scribing the interaction (contact point in global coordinates, Normal_Gap, and unit surface
normal).

QUADFACELA4 - A 4-node quadrilateral face with linear interpolation.
QUADFACEQS - An 8-node quadrilateral face with quadratic interpolation.

Search_Data - An array containing user-specified parameters (currently three:
Interaction_Status, Search Normal_Tolerance and Search Tangential _Tolerance) that
must be set by the host code to control the search algorithms for all possible pairs of inter-
acting topological entities.

Search_Normal_Tolerance - An absolute distance defined by the user to determine, in con-
junction with any physical motion, whether two topological entities interact. This toler-
ance acts normal to the face.

Search_Tangential _Tolerance -An absolute distance defined by the user to determine, in
conjunction with any physical motion, whether two topological entities interact. This tol-
erance acts tangential to the face.

Static_Search_1_Configuration - The search algorithm that uses only one configuration to
determine interactions using a closest point projection.

Static_Search_2_Configuration - The search algorithm that uses two configurations, cur-
rent and predicted, to determine interactions using a closest point projection.

TRIFACEL3 - A 3-node triangular face with linear interpolation.

TRIFACEQE6 - A 6-node triangular face with quadratic interpolation.

Distribution

Distribution:

David Crane (5)

Los Alamos National Laboratory
Division-ESA Group-EA

Tech Area 16 Building 242 Office 106
Mail Stop P946

Los Alamos, NM 87545

MS0321 9200 W.J. Camp
MS0321 9230 P. Yarrington
MS0819 9231 E. A.Boucheron
MS0819 9231 K. H. Brown (20)
MS0819 9231 S. Carrol
MS0819 9231 D.E. Carrol
MS0819 9231 R. M. Summers
MS0824 9112 A.C. Ratzel

M S0826 9143 H. C. Edwards
M S0826 9143 J. R. Stewart
M S0826 9114 P.R. Schunk
M S0826 9143 J.D. Zepper
MS0827 9140 J. M. McGlaun
M S0835 9141 S W.Bova
MS0835 9141 R.J. Cochran
MS0835 9141 M. W. Glass
MS0835 9141 S. N. Kempka
MS0835 9141 R. R. Lober
MS0835 9142 K. H. Pierson
MS0841 9100 T.C. Bicke
MS0847 9124 K. F. Alvin
MS0847 9142 S.W. Attaway
M S0847 9142 M. K. Bhardwagj
MS0847 9142 M. L. Blanford
MS0847 9142 M. W. Heinstein
MS0847 9142 A. S Gullerud
M S0847 9142 S.W. Key

M S0847 9142 J. R.Koteras
M S0847 9142 J. A. Mitchell
MS0847 9123 H.S. Morgan
MS0847 9142 J. S. Peery
MS0847 9142 G. M. Reese
MS1111 9226 K.D. Devine
MS1111 9226 C.T.Vaughan
MS9042 8728 C. Moen
MS9161 8726 E-PChen
MS9161 8726 P.A.Klein

M S9405 8726 R.E. Jones (5)

Distribution

MS0612
MS0899
MS9018

9612 Review & Approval Desk
9616 Technical Library (2)
8945-1 Central Technical Files

86

	Abstract
	Table of Contents
	1. Introduction 15
	2. C++ Application Programming Interface (API) 31
	3. C Application Programming Interface (API) 45
	4. Fortran Application Programming Interface (API) 59
	5. Example 73

	List of Figures
	List of Tables
	Table 1. NodeFace_Interaction Data for 3D 21
	Table 2. NodeSurface_Interaction Data for 3D 22
	Table 3. Nodal Variables for ExodusII Output 28
	Table 4. Element Variables for ExodusII Output 29
	Table 5. C++ Data Description for Analytic_Surfaces 35
	Table 6. C Data Description for Analytic_Surfaces 49
	Table 7. Fortran Data Description for Analytic_Surfaces 63
	Table 8. Face_Blocks for Example Problem 74
	Table 9. Current and Predicted Positions for Example Problem 78
	Table 10. NodeFace_Interactions for Example Problem 80
	Table 11. NodeSurface_Interactions for Example Problem 81

	1. Introduction
	1.1 Topology
	1.1.1 Node_Blocks
	1.1.2 Face_Blocks
	1.1.3 Analytic_Surfaces
	1.1.4 Search_Data

	1.2 Search Algorithms
	Figure 1. Idealized 2D face with Search_Normal_Tolerance
	Figure 2. Idealized 2D face with Search_Tangential_Tolerance
	1.2.1 Static_Search _1_Configuration
	1.2.2 Static_Search_2_Configuration
	1.2.3 Dynamic_Search_2_Configuration

	1.3 Interactions
	1.3.1 NodeFace_Interactions
	Figure 3. 3D NodeFace_Interactions
	Table 1. NodeFace_Interaction Data for 3D

	1.3.2 NodeSurface_Interactions
	Figure 4. 3D NodeSurface_Interaction Data
	Table 2. NodeSurface_Interaction Data for 3D

	1.4 Search Options
	1.4.1 Multiple Interactions at a Node
	Figure 5. Definition of Angle Between Faces
	Figure 6. Interactions for Single vs. Multiple Interaction Definition

	1.4.2 Normal Smoothing
	Figure 7. Normal Smoothing Across an Edge
	Figure 8. Region of Normal Smoothing for a QuadFaceL4
	Figure 9. Illustration of Normal Smoothing Resolution

	1.5 Explicit Transient Dynamic Enforcement
	1.6 Gap Removal Enforcement
	1.7 Errors
	1.8 Plotting
	Table 3. Nodal Variables for ExodusII Output
	Table 4. Element Variables for ExodusII Output

	2. C++ Application Programming Interface (API)
	2.1 Version and Date
	2.1.1 Version
	2.1.2 VersionDate
	2.1.3 Contact_MPI_Compatibility

	2.2 Errors
	2.2.1 Number_of_Errors
	2.2.2 Error_Message

	2.3 Creating a ContactSearch Object
	2.3.1 ContactSearch

	2.4 Search_Data
	2.4.1 Check_Search_Data_Size
	2.4.2 Set_Search_Data

	2.5 Analytic_Surfaces
	2.5.1 Add_Analytic_Surface
	Figure 10. Analytic Cylindrical Surfaces
	Table 5. C++ Data Description for Analytic_Surfaces

	2.5.2 Set_Analytic_Surface_Configuration

	2.6 Node_Block Data
	2.6.1 Set_Node_Block_Configuration
	2.6.2 Set_Node_Block_Attributes

	2.7 Search Algorithms
	2.7.1 Set_Search_Option
	2.7.2 Static_Search_1_Configuration
	2.7.3 Static_Search _2_Configuration
	2.7.4 Dynamic_Search_ 2_Configuration

	2.8 Extracting NodeFace_Interactions
	2.8.1 Size_NodeFace_Interactions
	2.8.2 Get_NodeFace_Interactions

	2.9 Extracting NodeSurface_Interactions
	2.9.1 Size_NodeSurface_Interactions
	2.9.2 Get_NodeSurface_Interactions

	2.10 ExodusII Plotting
	2.10.1 Exodus_Output

	2.11 Restart Functions
	2.11.1 Restart_Size
	2.11.2 Extract_Restart_Data
	2.11.3 ContactSearch (restart)

	2.12 Registering an Enforcement Object with the Search
	2.12.1 Register_Enforcement

	2.13 Creating a ContactTDEnforcement Object
	2.13.1 ContactTDEnforcement

	2.14 Extracting Contact Forces
	2.14.1 Compute_Contact_Force

	2.15 Creating a ContactGapRemoval Object
	2.16 Extracting the Gap Removal Displacements

	3. C Application Programming Interface (API)
	3.1 Version and Date
	3.1.1 version
	3.1.2 versiondate
	3.1.3 contact_mpi_compatibility

	3.2 Errors
	3.2.1 number_of_search_errors
	3.2.2 get_search_error_message

	3.3 Creating a ContactSearch “Object”
	3.3.1 build_search

	3.4 Search_Data
	3.4.1 check_search_data_size
	3.4.2 set_search_data

	3.5 Analytic_Surfaces
	3.5.1 add_analytic_surface
	3.5.2 set_analytic_surface_configuration
	Table 6. C Data Description for Analytic_Surfaces

	3.6 Node_Block Data
	3.6.1 set_node_block_configuration
	3.6.2 set_node_block_attributes

	3.7 Search Algorithms
	3.7.1 set_search_option
	3.7.2 static_search_1_configuration
	3.7.3 static_search_2_configuration
	3.7.4 dynamic_search_2_configuration

	3.8 Extracting NodeFace_Interactions
	3.8.1 size_nodeface_interactions
	3.8.2 get_nodeface_interactions

	3.9 Extracting NodeSurface_Interactions
	3.9.1 size_nodesurface_interactions
	3.9.2 get_nodesurface_interactions

	3.10 ExodusII Plotting
	3.10.1 exodus_output

	3.11 Restart Functions
	3.11.1 restart_size
	3.11.2 extract_restart_data
	3.11.3 build_search_restart

	3.12 Registering an Enforcement Object with the Search
	3.12.1 reg_td_enforcement_w_search
	3.12.2 reg_gap_removal_w_search

	3.13 Creating a ContactTDEnforcement “Object”
	3.13.1 build_td_enforcement

	3.14 Extracting Contact Forces
	3.14.1 compute_td_contact_forces

	3.15 Creating a ContactGapRemoval “Object”
	3.15.1 build_gap_removal

	3.16 Extracting the Gap Removal Displacements
	3.16.1 compute_gap_removal

	3.17 Clean Up
	3.17.1 cleanup_search
	3.17.2 cleanup_td_enforcement
	3.17.3 cleanup_gap_removal

	4. Fortran Application Programming Interface (API)
	4.1 Version and Date
	4.1.1 version
	4.1.2 versiondate
	4.1.3 contact_mpi_compatibility

	4.2 Errors
	4.2.1 number_of_search_errors
	4.2.2 get_search_error_message

	4.3 Creating a ContactSearch “Object”
	4.3.1 build_search

	4.4 Search_Data
	4.4.1 check_search_data_size
	4.4.2 set_search_data

	4.5 Analytic_Surfaces
	4.5.1 add_analytic_surface
	4.5.2 set_analytic_surface_configuration
	Table 7. Fortran Data Description for Analytic_Surfaces

	4.6 Node_Block Data
	4.6.1 set_node_block_configuration
	4.6.2 set_node_block_attributes

	4.7 Search Algorithms
	4.7.1 set_search_option
	4.7.2 static_search_1_configuration
	4.7.3 static_search_2_configuration
	4.7.4 dynamic_search_2_configuration

	4.8 Extracting NodeFace_Interactions
	4.8.1 size_nodeface_interactions
	4.8.2 get_nodeface_interactions

	4.9 Extracting NodeSurface_Interactions
	4.9.1 size_nodesurface_interactions
	4.9.2 get_nodesurface_interactions

	4.10 ExodusII Plotting
	4.10.1 exodus_output

	4.11 Restart Functions
	4.11.1 restart_size
	4.11.2 extract_restart_data
	4.11.3 build_search_restart

	4.12 Registering an Enforcement Object with the Search
	4.12.1 reg_td_enforcement_w_search
	4.12.2 reg_gap_removal_w_search

	4.13 Creating a ContactTDEnforcement “Object”
	4.13.1 build_td_enforcement

	4.14 Extracting Contact Forces
	4.14.1 compute_td_contact_forces

	4.15 Creating a ContactGapRemoval “Object”
	4.15.1 build_gap_removal

	4.16 Extracting the Gap Removal Displacements
	4.16.1 compute_gap_removal

	4.17 Clean Up
	4.17.1 cleanup_search
	4.17.2 cleanup_td_enforcement
	4.17.3 cleanup_gap_removal

	5. Example
	5.1 Problem Description
	Figure 11. Example impact problem (two rectangular bodies and an Analytic_Surface)
	Figure 12. Face_Block Numbering for Example Problem
	Figure 13. Surface Topology for Example Problem
	Table 8. Face_Blocks for Example Problem

	5.2 Constructing a ContactSearch Object
	5.3 Adding an Analytic_Surface
	5.4 Search Data
	5.5 Setting the Search Options
	5.6 Specifying Configurations
	Table 9. Current and Predicted Positions for Example Problem

	5.7 Performing the Search
	5.8 Extracting Interactions
	Table 10. NodeFace_Interactions for Example Problem
	Table 11. NodeSurface_Interactions for Example Problem

	5.9 ExodusII Output
	Figure 14. ExodusII Output for Example Problem

	Appendix A: Glossary of ACME Terms

